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Disclaimers and Logistics
• Disclaimer: Some of us are CAs, but we have not seen the exam. We have no

idea what the questions are. However, we’ve taken the course and reviewed
Sariel’s previous exams, so we have suspicions as to what the questions will be
like.
• This review session is being recorded. Recordings and slides will be distributed

on EdStem after the end.
• Agenda: We’ll quickly review all topics likely to be covered, then go through a

practice exam, then review individual topics by request.
◦ Questions are designed to be written in the same style as Kani’s previous

exams but to be slightly harder, so don’t worry if you don’t get everything right
away!

• Please let us know if we’re going too fast/slow, not speaking loud
enough/speaking too loud, etc.
• If you have a question anytime during the review session, please ask! Someone

else almost surely has a similar question.
• We’ll provide a feedback form at the end of the session.



Recursion
• Definition: Reducing the problem to a smaller instance of itself, where

eventually we can terminate in a base case.
◦ Think: If we have a problem of size n, we want to continuously reduce to a

problem smaller than n.
◦ Example: Tower of Hanoi

Template

1: procedure AMAZINGRECURSIVEALGO(n)
2: if n == [some base case] then
3: return [value]
4: else
5: return AmazingRecursiveAlgo(n − 1)

• Similar to induction!



Recursion: Runtime Analysis
• General Form:

T (n) = r︸︷︷︸
# of subproblems

·

work at each subproblem︷ ︸︸ ︷
T
(

n
c

)
+ f (n)︸︷︷︸

work at current level

◦ Describes how the amount of work changes between each level of recursion.
◦ We can solve for a time complexity that describes the scaling behaviour of

the algorithm at hand.

• Master’s Theorem
Master’s Theorem

Decreasing: r · f (n/c) = κ · f (n) where κ < 1 =⇒ T (n) = O(f (n))
Equal: r · f (n/c) = κ · f (n) where κ = 1 =⇒ T (n) = O(f (n) · logcn)

Increasing: r · f (n/c) = κ · f (n) where κ > 1 =⇒ T (n) = O(nlogc r)

◦ Intuition: If each level contains more work than the level below it, then the
root level will dominate. If each level contains the same amount of work, then
we have logcn levels with f (n) work. If each level contains less work than the
work below it, then the leaf nodes will dominate.
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Divide and Conquer Algos: Merge Sort
• Purpose: Sort an arbitrary array.
• Time Complexity: O(n log n)
• Intuition: Three phases: (a) split the array in half, (b) sort each side, (c) merge

the sorted halves by repeatedly comparing smallest elements on each side not
yet inserted.



Divide and Conquer Algos:
Quickselect
• Purpose: Get the nth smallest element in an arbitrary array.
• Time Complexity: Avg: O(n) | Worst; O(n2), (O(n) with MoM)
• Intuition: Pick a pivot P with a value PV and rearrange the array such that all the

elements that are less than PV are to the left of P and all the elements that are
greater than PV are to the right of P, just like quick select. If the length of the
array of elements that are less than PV is greater than n, then we know that the
nth smallest element is to the left of P and we recurse on the left subarray.
Otherwise, we know that the nth smallest element is to the right of P and we
recurse on the right subarray.
◦ Why the poor worst case performance?
◦ Again, because we can get unlucky and pick the worst possible pivot at every

step.
◦ We can guarantee linear performance with a better pivot-picking algorithm

such as MEDIANOFMEDIANS
▶ Finds element that larger than 3

10 and smaller than 7
10 of the array’s elements.

▶ Runs in O(n) time



Divide and Conquer Algos: Quicksort
• Purpose: Sort an arbitrary array.
• Time Complexity: Avg: O(n log n) | Worst: O(n2) (O(n log n) deterministic with

quickselect partitioning)
• Intuition: Pick a pivot and rearrange the array such that all the elements that are

less than the pivot value are to the left of the pivot value and all the elements that
are greater than the pivot value are to the right of the pivot value. Then sort each
side.
◦ Why the poor worst case performance?
◦ Because we can get unlucky and pick the worst possible pivot at every step.



Divide and Conquer Algos: Binary
Search
• Purpose: Find the existence of an element in a sorted array
• Time Complexity: O(log n)
• Intuition: Say we are trying to find the value n. Pick the middle element M in the

array. If n > M, the element must be to the right of n and we recurse on the right.
Otherwise, we recurse on the left.



Divide and Conquer Algos:
Karatsuba’s
• Purpose: Multiplication
• Time Complexity: O(nlog2 3) ≈ O(n1.585)

• 3 Phases:
◦ Divide: Represent x as x0pn + x1, y as y0pn + y1
◦ Recurse: Calculate x0y0, x1y1, (x0 + x1)(y0 + y1)
◦ Combine: Use the three results to calculate our final answer.



Backtracking
• Technique to methodically explore the solutions to a problem via the reduction to

said problem to a smaller variant of itself, a.k.a recursion.
• Intuitively, think of the problem space as a maze that we are trying to find the exit

of. For each path, you would traverse until you reach a dead end, at which point
you back track to try a different path.
• To find recurrence, think ”What information about a subset of my current problem

space would be really nice to know?”

Example: Longest Increasing
Subsequence
• ”What is the length of a longest increasing subsequence in an arbitrary array?”

LIS(i, j) =


0 if i = 0
LIS(i − 1, j) if A[i] ≥ A[j]

max

{
LIS(i − 1, j)
1 + LIS(i − 1, i)

else

This kind of sucks; we’re redoing computation that we’ve already done! What if
instead, we computed all the subproblems beforehand, wrote down the solutions,
then did the recursion?
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Dynamic Programming
• It’s backtracking, but we compute all of the subproblems iteratively.
◦ This idea of "writing things down" as to not repeat computation is called

memoization

• Alternatively, you can think about this recursively, except we check our
memoization structure to see if we’ve computed anything before. If we have, we
just use the computed result. Otherwise, we compute the subproblem.
• For a DP solution, we need:

1. English Description
2. Recurrence
3. Memoization Structure
4. Solution Location
5. Evaluation Order
6. Runtime
• How to solve a DP:
◦ Identify how we can take advantage of a recursive call on a smaller subset of

the input space.
◦ Identity base cases
◦ Identity recurrences (they should cover all possible cases at each step)
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Dynamic Programming
Let’s look at the LIS example from before: ”What is the length of a longest
increasing subsequence in an arbitrary array?”

procedure LIS-ITERATIVE(A[1..n]):
A← [1 . . . n][1 . . . n]
for all i ← 1 . . . n do

for all j ← i . . . n do
if A[i] ≤ A[j] then

LIS[i][j] = 1
else

LIS[i][j] = 0
for all i ← 1 . . . n do

for all i ← 1 . . . n do
if A[i] ≥ A[j] then

LIS[i][j] = LIS[i − 1, j]
else

LIS[i][j] = max

{
LIS[i − 1, j]
LIS[i − 1, i] + 1

return LIS[n, n]
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Graphs
• Definition: A set of vertices V connected by a set of edges E . Individual edges

are notated as (u, v), where u, v ∈ V .
◦ They are usually represented as adjacency lists or adjacency matrices

◦ Directed: Each edge (u, v) ∈ E now has a direction u → v
◦ Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive vertices
have an edge
• Cycle: A sequence of distinct vertices where each pair of consecutive vertices

have an edge and the first and last vertices are connected.
• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u and v .
• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a path

between u and v and from v to u.
• Connected Component (of u): The set of all vertices connected to u.
• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.
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Graph Algorithms: Traversal

• BFS:
◦ Purpose: Reachability, Shortest Path (unweighted graph)
◦ Implementation details: Add your neighbours to a queue, pop from the

queue to get next node
◦ Runtime: O(V + E)

• DFS:
◦ Purpose: Reachability, toposort
◦ Implementation details: Add your neighbours to a stack, pop from the stack

to get next node
◦ Runtime: O(V + E)
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Graph Algorithms: Shortest Path
• Dijkstra’s
◦ Purpose: SSSP, no negative edges
◦ Implementation: Visit neighbours in priority queue
◦ Runtime: O(m log n) (with Quake Heaps, O(m + n log n))

• Bellman-Ford:
◦ Purpose: SSSP, yes negative weights. Will detect negative cycles.
◦ Implementation: Dynamic Programming recurrence:

▶ d(v , k) is the shortest-walk distance from s to v using at most k edges
▶ d(v , k) = min

(
d(v , k − 1),min

u→v
d(u, k − 1) + ℓ(u → v)

)
◦ Runtime: O(mn)

• Floyd-Warshall:
◦ Purpose: APSP, yes negative edge weights
◦ Implementation: Dynamic Programming recurrence:

▶ d(u, v , i) is the shortest-path distance from u to v only going through vertices 1 . . . i .
▶ d(u, v , i) = min (d(u, k , k − 1),d(k , v , k − 1)+)

◦ Runtime: O(n3)
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d(u, k − 1) + ℓ(u → v)

)
◦ Runtime: O(mn)

• Floyd-Warshall:
◦ Purpose: APSP, yes negative edge weights
◦ Implementation: Dynamic Programming recurrence:

▶ d(u, v , i) is the shortest-path distance from u to v only going through vertices 1 . . . i .
▶ d(u, v , i) = min (d(u, k , k − 1),d(k , v , k − 1)+)

◦ Runtime: O(n3)



Graph Algorithms: MSTs
3 main algorithms:
• Prim-Jarnik: Keep a priority queue for edges to be added to the tree. Start the

tree at some arbitrarily selected root vertex. When adding a vertex, add all of its
neighbors to the queue. Runtime: O(|E | log |V |), O(|V | log |V | + |E |) using
Quake heaps.

• Kruskal: Keep a disjoint-sets data structure to keep track of connected
components. Sort the edges, then in order, add each edge if it connects two
components. Runtime: O(|E | log |V |).
• Borůvka: No fancy data structures! Just find smallest edge going out of each

vertex, then contract all edges that you selected! Runtime: O(|E | log |V |)
• Faster (but way more complicated algorithms) exist. Yao (1975):

O(|E | log log |V |) with a modification of Borůvka’s (using linear-time median
selection). Karger-Klein-Tarjan (1995): O(|E |) in expectation, Chazelle (2000):
O(|E |α(|V |, |E |)) deterministic
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Graph Algorithms: SCC
SCC-Finding Algorithms (Tarjan’s, Kosuraju’s)
• Purpose: To identify (and collapse) SCCs in a (directed) graph
• Runtime: O(V + E)

• Returns: A metagraph that has one node for each SCC.



Graph Algorithms: Longest Path
Longest path in a Directed Acyclic Graph (DAG)
• Purpose: To find the longest simple path (no repeating vertices) by weight in a

graph which is guaranteed to be a DAG1.
• Runtime2: O(V + E)

• Returns: The sum of the weights of the longest path in the DAG.

1Finding the longest path in other types of graphs is at least NP-hard.
2This is a relatively straight-forward DP on a DAG problem if you wish to derive it.



Graph Problems: General Stuff
How to solve graph problems:
1. Identify type of problem (Reachability, Shortest Path, SCC)
2. Construct new graph
◦ Add sources/sinks
◦ Add vertices via V ′ = V × {some set} (Useful for tracking states)
◦ Add vertices via E ′ = E × {some set} (Useful for allowing/prohibit certain

behaviour)
3. Apply some stock algorithm (DO NOT MODIFY THE ALGORITHMS - MODIFY

THE INPUTS!)
4. Draw connection between how to result of the algorithm upon the new graph

relates to the solution of the original question.



Recurrences and Asymptotics
Give a tight asymptotic bound for each recurrence:
• T (n) = 4 T (n

2) + n log2 n

• T (n) = T (3n
4 ) + T (n

4) + 5n
• T (n) = 9 T (n

3) + n2

Group the following functions s.t. f and g are in the same group if f (x) ∼ Θ(g(x)),
and sort the groups by runtime:
• nn

• log log n
• 374n

• n!
• log(n + n374)

• log nn

• n1.000001

• 2n

• n log n5

• 1
logn 2
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Divide and Conquer
Consider the following (correct!) in-place sorting algorithm:

1: procedure STOOGESORT(A[1 . . . n])
2: If A[1] > A[n], swap them.
3: if n ≥ 3 then
4: STOOGESORT the initial 2/3 of A
5: STOOGESORT the final 2/3 of A
6: STOOGESORT the initial 2/3 of A (again)

Give a tight asymptotic bound on the runtime of StoogeSort, in terms of n.



Dynamic Programming
You are given an array of integers A[1..2n]. On each turn, you choose two arbitrary
integers with no other numbered integers between them. You then earn points equal
to the division of your two chosen numbers, and both chosen integers are removed.
Once a square is removed, it cannot be chosen in any future turns. Your goal is to
remove all of the numbers and to earn as many points as possible. Describe an
algorithm to find the maximum number of points you can earn in a game.

4 3 6 5 9 1 2 3 7 3 4 8

4 3 6 5 9 1 2 3 4 8

4 3 6 5 2 3 4 8

4 3 6 3 4 8

4 3 4 8

4 8

+ 7
3 points!

+ 9
1 points!

+ 5
2 points!

+ 6
3 points!

+ 4
3 points!

+ 4
8 points!

All done!



Dynamic Programming



Dynamic Programming
This semester, Ryan, a brilliant all-knowing algorithms student, learned about the lovely social hours ACM puts
on even Friday, providing free food to all that come. Unfortunately, Seth Jerickson, the almighty evil professor,
has scheduled a 100 point exam every Saturday! This is only worsened by the fact that every time that Ryan
goes to an ACM social hour, he falls into a deep food coma. This causes him to lose so many hours of studying
and brain cells that his max score on this exam and every following exam that he takes after attending a social
hour decreases by P[i ], where i is the current week number. Ryan can only lose up to M points in the semester
before he fails the course. Alternatively, if Ryan does not go to ACM’s social hour for that week, he will have
enough time to study to obtain the maximum score he is able to achieve. Now, studying for 374 comes at the
expensive of his happiness levels, and thus, he would like to attend as many social hours as possible. For each
social hour he attends on week i , he will receive H[i ] amount of happiness. Furthermore, for each consecutive
social hour he attends, there is a cumulative 2x multiplier on the happiness he gains.

For example, suppose that there are 10 weeks in the semester, and Ryan attends social hour on weeks 2, 4, and
5 (0-indexed). Let H = [5,9,2,4,7,2,8,0,4,2] and let P = [9,4,2,8,6,4,3,2,7,9]. The amount of happiness
Ryan achieves is 0+ 0+ 2+ 0+ 7+ 2× 2+ 0+ 0+ 0+ 0. His exam scores for the 10 exams would be 100, 100,
98, 100, 92, 88, 100, 100, 100, 100. Given N weeks of the semester, where each week i has:

• A happiness value H[i ] gained for attending that week’s social
• A penalty value P[i ] subtracted from his current maximum score

Describe and analyze an algorithm that determines the maximum happiness Ryan can achieve while still
passing the exam.



Dynamic Programming



Graphs
You are in Austin, TX, which is lit at night by “moon towers”, high powerful lamps
which illuminate multiple blocks. You are given a weighted undirected graph
G = (V ,E) as a map of Austin, as well as a list of moon towers represented as pairs
(p, v) where v ∈ V is the location of the tower and p ∈ R+ is the power of the moon
tower.
(a) A vertex v is considered lit if there exists a moontower m s.t. d(m, v) < p(m).

Describe and analyze and algorithm to find all lit vertices.

(b) An edge u ↔ v is lit if for all 0 ≤ h ≤ ℓ(u ↔ v), there exists a moontower m s.t.
either d(m, u) + h < p(m) or d(m, v) + ℓ(u ↔ v)− h < p(m). Describe and
analyze and algorithm to find all lit edges.

(c) Using your answers to parts (a) and (b), describe and analyze and algorithm to
calculate the shortest s → t path where at most k edges are unlit.
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Graphs
(a) A train station is considered critical if it breaking down would result in one city in

the network no longer being able to reach another city in the network by any
path. Describe and analyze an algorithm to, given a train station t and a network
G, determine if t is a critical train station,

(b) Describe and analyze an algorithm to find all critical train stations.



Graphs
(a) A train station is considered critical if it breaking down would result in one city in

the network no longer being able to reach another city in the network by any
path. Describe and analyze an algorithm to, given a train station t and a network
G, determine if t is a critical train station,

(b) Describe and analyze an algorithm to find all critical train stations.



Feedback
• Further questions in ACM (Siebel 1104) after this
• Please fill out the feedback form:
go.acm.illinois.edu/cs374a_mt2_feedback


