
CS/ECE 374B Review MT2

Divide and Conquer, Dynamic Programming, and Graphs

Disclaimers and Logistics

• Disclaimer: Some of us are CAs, but we have not seen the exam. We have

no idea what the questions are. However, we’ve taken the course and

reviewed Kani’s previous exams, so we have suspicions as to what the

questions will be like.

• This review session is being recorded. Recordings and slides will be

distributed on ACM’s + HKN’s website after the end.

• Agenda: We’ll quickly review all topics likely to be covered, then go
through a practice exam, then review individual topics by request.

• Questions are designed to be written in the same style as Kani’s previous exams
but to be slightly harder, so don’t worry if you don’t get everything right away!

• Please let us know if we’re going too fast/slow, not speaking loud

enough/speaking too loud, etc.

• If you have a question anytime during the review session, please ask!

Someone else almost surely has a similar question.

• We’ll provide a feedback form at the end of the session.

Recursion

• Definition: Reducing the problem to a smaller instance of itself, where
eventually we can terminate in a base case.

• Think: If we have a problem of size n, we want to continuously reduce to a
problem smaller than n.

• Example: Tower of Hanoi

Template

1: procedure AmazingRecursiveAlgo(n)

2: if n == [some base case] then

3: return [value]

4: else

5: return AmazingRecursiveAlgo(n− 1)

• Similar to induction!

Recursion: Runtime Analysis

• General Form:

T (n) = r︸︷︷︸
of subproblems

·

work at each subproblem︷ ︸︸ ︷
T
(n
c

)
+ f(n)︸︷︷︸

work at current level

• Describes how the amount of work changes between each level of recursion.
• We can solve for a time complexity that describes the scaling behaviour of the
algorithm at hand.

• Master’s Theorem

Master’s Theorem

Decreasing: r · f(n/c) = κ · f(n) where κ < 1 =⇒ T (n) = O(f(n))

Equal: r · f(n/c) = κ · f(n) where κ = 1 =⇒ T (n) = O(f(n) · logcn)

Increasing: r · f(n/c) = κ · f(n) where κ > 1 =⇒ T (n) = O(nlogc r)

• Intuition: If each level contains the more work than the level below it, then the
root level will dominate. If each level contains the same amount of work, then
we have logcn levels with f(n) work. If each level contains less work than the
work below it, then the leaf nodes will dominate.

Recursion: Runtime Analysis

• General Form:

T (n) = r︸︷︷︸
of subproblems

·

work at each subproblem︷ ︸︸ ︷
T
(n
c

)
+ f(n)︸︷︷︸

work at current level

• Describes how the amount of work changes between each level of recursion.
• We can solve for a time complexity that describes the scaling behaviour of the
algorithm at hand.

• Master’s Theorem

Master’s Theorem

Decreasing: r · f(n/c) = κ · f(n) where κ < 1 =⇒ T (n) = O(f(n))

Equal: r · f(n/c) = κ · f(n) where κ = 1 =⇒ T (n) = O(f(n) · logcn)

Increasing: r · f(n/c) = κ · f(n) where κ > 1 =⇒ T (n) = O(nlogc r)

• Intuition: If each level contains the more work than the level below it, then the
root level will dominate. If each level contains the same amount of work, then
we have logcn levels with f(n) work. If each level contains less work than the
work below it, then the leaf nodes will dominate.

Recursion: Runtime Analysis

• General Form:

T (n) = r︸︷︷︸
of subproblems

·

work at each subproblem︷ ︸︸ ︷
T
(n
c

)
+ f(n)︸︷︷︸

work at current level

• Describes how the amount of work changes between each level of recursion.
• We can solve for a time complexity that describes the scaling behaviour of the
algorithm at hand.

• Master’s Theorem

Master’s Theorem

Decreasing: r · f(n/c) = κ · f(n) where κ < 1 =⇒ T (n) = O(f(n))

Equal: r · f(n/c) = κ · f(n) where κ = 1 =⇒ T (n) = O(f(n) · logcn)

Increasing: r · f(n/c) = κ · f(n) where κ > 1 =⇒ T (n) = O(nlogc r)

• Intuition: If each level contains the more work than the level below it, then the
root level will dominate. If each level contains the same amount of work, then
we have logcn levels with f(n) work. If each level contains less work than the
work below it, then the leaf nodes will dominate.

Divide and Conquer Algos: Merge Sort

• Purpose: Sort an arbitrary array.

• Time Complexity: O(n logn)

• Intuition: Three phases: (a) split the array in half, (b) sort each side, (c)

merge the sorted halves by repeatedly comparing smallest elements on

each side not yet inserted.

Divide and Conquer Algos: Quicksort

• Purpose: Sort an arbitrary array.

• Time Complexity: Avg: O(n logn) | Worst: O(n2) (O(n logn) deterministic

with quickselect partitioning)

• Intuition: Pick a pivot and rearrange the array such that all the elements
that are less than the pivot value are to the left of the pivot value and all the
elements that are greater than the pivot value are to the right of the pivot
value. Then sort each side.

• Why the poor worst case performance?
• Because we can get unlucky and pick the worst possible pivot at every step.

Divide and Conquer Algos: Quickselect

• Purpose: Get the nth smallest element in an arbitrary array.

• Time Complexity: Avg: O(n) | Worst; O(n2), (O(n) with MoM)

• Intuition: Pick a pivot P with a value PV and rearrange the array such that
all the elements that are less than PV are to the left of P and all the
elements that are greater than PV are to the right of P, just like quick select.
If the length of the array of elements that are less than PV is greater than n,
then we know that the nth smallest element is to the left of P and we
recurse on the left subarray. Otherwise, we know that the nth smallest
element is to the right of P and we recurse on the right subarray.

• Why the poor worst case performance?
• Again, because we can get unlucky and pick the worst possible pivot at every
step.

• We can guarantee linear performance with a better pivot-picking algorithm
such as MedianOfMedians

• Finds element that larger than 3
10 and smaller than 7

10 of the array’s elements.
• Runs inO(n) time

Divide and Conquer Algos: Binary Search

• Purpose: Find the existence of an element in a sorted array

• Time Complexity: O(logn)

• Intuition: Say we are trying to find the value n. Pick the middle elementM
in the array. If n > M , the element must be to the right of n and we recurse

on the right. Otherwise, we recurse on the left.

Divide and Conquer Algos: Karatsuba’s

• Purpose: Multiplication

• Time Complexity: O(nlog2 3) ≈ O(n1.585)
• 3 Phases:

• Divide: Represent x as x0pn + x1, y as y0pn + y1
• Recurse: Calculate x0y0, x1y1, (x0 + x1)(y0 + y1)
• Combine: Use the three results to calculate our final answer.

Backtracking

• Technique to methodically explore the solutions to a problem via the

reduction to said problem to a smaller variant of itself, a.k.a recursion.

• Intuitively, think of the problem space as a maze that we are trying to find

the exit of. For each path, you would traverse until you reach a dead end, at

which point you back track to try a different path.

• To find recurrence, think ”What information about a subset of my current

problem space would be really nice to know?”

Example: Longest

Increasing Subsequence

• ”What is the length of a longest increasing subsequence in an arbitrary

array?”

LIS(i, j) =


0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

This kind of sucks; we’re redoing computation that we’ve already done!

What if instead, we computed all the subproblems beforehand, wrote

down the solutions, then did the recursion?

Backtracking

• Technique to methodically explore the solutions to a problem via the

reduction to said problem to a smaller variant of itself, a.k.a recursion.

• Intuitively, think of the problem space as a maze that we are trying to find

the exit of. For each path, you would traverse until you reach a dead end, at

which point you back track to try a different path.

• To find recurrence, think ”What information about a subset of my current

problem space would be really nice to know?” Example: Longest

Increasing Subsequence

• ”What is the length of a longest increasing subsequence in an arbitrary

array?”

LIS(i, j) =


0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

This kind of sucks; we’re redoing computation that we’ve already done!

What if instead, we computed all the subproblems beforehand, wrote

down the solutions, then did the recursion?

Backtracking

• Technique to methodically explore the solutions to a problem via the

reduction to said problem to a smaller variant of itself, a.k.a recursion.

• Intuitively, think of the problem space as a maze that we are trying to find

the exit of. For each path, you would traverse until you reach a dead end, at

which point you back track to try a different path.

• To find recurrence, think ”What information about a subset of my current

problem space would be really nice to know?” Example: Longest

Increasing Subsequence

• ”What is the length of a longest increasing subsequence in an arbitrary

array?”

LIS(i, j) =


0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

This kind of sucks; we’re redoing computation that we’ve already done!

What if instead, we computed all the subproblems beforehand, wrote

down the solutions, then did the recursion?

Backtracking

• Technique to methodically explore the solutions to a problem via the

reduction to said problem to a smaller variant of itself, a.k.a recursion.

• Intuitively, think of the problem space as a maze that we are trying to find

the exit of. For each path, you would traverse until you reach a dead end, at

which point you back track to try a different path.

• To find recurrence, think ”What information about a subset of my current

problem space would be really nice to know?” Example: Longest

Increasing Subsequence

• ”What is the length of a longest increasing subsequence in an arbitrary

array?”

LIS(i, j) =


0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

This kind of sucks; we’re redoing computation that we’ve already done!

What if instead, we computed all the subproblems beforehand, wrote

down the solutions, then did the recursion?

Dynamic Programming

• It’s backtracking, but we compute all of the subproblems iteratively.
• This idea of ”writing things down” as to not repeat computation is called
memoization

• Alternatively, you can think about this recursively, except we check our

memoization structure to see if we’ve computed anything before. If we

have, we just use the computed result. Otherwise, we compute the

subproblem.

• For a DP solution, we need:

1. English Description
2. Recurrence
3. Memoization Structure
4. Solution Location
5. Evaluation Order
6. Runtime

• How to solve a DP:
• Identify how we can take advantage of a recursive call on a smaller subset of
the input space.

• Identity base cases
• Identity recurrences (they should cover all possible cases at each step)

Dynamic Programming

• It’s backtracking, but we compute all of the subproblems iteratively.
• This idea of ”writing things down” as to not repeat computation is called
memoization

• Alternatively, you can think about this recursively, except we check our

memoization structure to see if we’ve computed anything before. If we

have, we just use the computed result. Otherwise, we compute the

subproblem.

• For a DP solution, we need:

1. English Description
2. Recurrence
3. Memoization Structure
4. Solution Location
5. Evaluation Order
6. Runtime

• How to solve a DP:
• Identify how we can take advantage of a recursive call on a smaller subset of
the input space.

• Identity base cases
• Identity recurrences (they should cover all possible cases at each step)

Dynamic Programming

• It’s backtracking, but we compute all of the subproblems iteratively.
• This idea of ”writing things down” as to not repeat computation is called
memoization

• Alternatively, you can think about this recursively, except we check our

memoization structure to see if we’ve computed anything before. If we

have, we just use the computed result. Otherwise, we compute the

subproblem.

• For a DP solution, we need:

1. English Description
2. Recurrence
3. Memoization Structure
4. Solution Location
5. Evaluation Order
6. Runtime

• How to solve a DP:
• Identify how we can take advantage of a recursive call on a smaller subset of
the input space.

• Identity base cases
• Identity recurrences (they should cover all possible cases at each step)

Dynamic Programming

• It’s backtracking, but we compute all of the subproblems iteratively.
• This idea of ”writing things down” as to not repeat computation is called
memoization

• Alternatively, you can think about this recursively, except we check our

memoization structure to see if we’ve computed anything before. If we

have, we just use the computed result. Otherwise, we compute the

subproblem.

• For a DP solution, we need:

1. English Description
2. Recurrence
3. Memoization Structure
4. Solution Location
5. Evaluation Order
6. Runtime

• How to solve a DP:
• Identify how we can take advantage of a recursive call on a smaller subset of
the input space.

• Identity base cases
• Identity recurrences (they should cover all possible cases at each step)

Dynamic Programming

Let’s look at the LIS example from before: ”What is the length of a longest

increasing subsequence in an arbitrary array?”

Dynamic Programming

Let’s look at the LIS example from before: ”What is the length of a longest

increasing subsequence in an arbitrary array?”

Graphs

• Definition: A set of vertices V connected by a set of edges E. Individual
edges are notated as (u, v), where u, v ∈ V .

• They are usually represented as adjacency lists or adjacency matrices

• Directed: Each edge (u, v) ∈ E now has a direction u → v
• Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive

vertices have an edge

• Cycle: A sequence of distinct vertices where each pair of consecutive

vertices have an edge and the first and last vertices are connected.

• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u
and v.

• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a

path between u and v and from v to u.

• Connected Component (of u): The set of all vertices connected to u.

• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.

Graphs

• Definition: A set of vertices V connected by a set of edges E. Individual
edges are notated as (u, v), where u, v ∈ V .

• They are usually represented as adjacency lists or adjacency matrices
• Directed: Each edge (u, v) ∈ E now has a direction u → v

• Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive

vertices have an edge

• Cycle: A sequence of distinct vertices where each pair of consecutive

vertices have an edge and the first and last vertices are connected.

• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u
and v.

• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a

path between u and v and from v to u.

• Connected Component (of u): The set of all vertices connected to u.

• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.

Graphs

• Definition: A set of vertices V connected by a set of edges E. Individual
edges are notated as (u, v), where u, v ∈ V .

• They are usually represented as adjacency lists or adjacency matrices
• Directed: Each edge (u, v) ∈ E now has a direction u → v
• Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive

vertices have an edge

• Cycle: A sequence of distinct vertices where each pair of consecutive

vertices have an edge and the first and last vertices are connected.

• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u
and v.

• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a

path between u and v and from v to u.

• Connected Component (of u): The set of all vertices connected to u.

• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.

Graphs

• Definition: A set of vertices V connected by a set of edges E. Individual
edges are notated as (u, v), where u, v ∈ V .

• They are usually represented as adjacency lists or adjacency matrices
• Directed: Each edge (u, v) ∈ E now has a direction u → v
• Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive

vertices have an edge

• Cycle: A sequence of distinct vertices where each pair of consecutive

vertices have an edge and the first and last vertices are connected.

• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u
and v.

• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a

path between u and v and from v to u.

• Connected Component (of u): The set of all vertices connected to u.

• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.

Graphs

• Definition: A set of vertices V connected by a set of edges E. Individual
edges are notated as (u, v), where u, v ∈ V .

• They are usually represented as adjacency lists or adjacency matrices
• Directed: Each edge (u, v) ∈ E now has a direction u → v
• Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive

vertices have an edge

• Cycle: A sequence of distinct vertices where each pair of consecutive

vertices have an edge and the first and last vertices are connected.

• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u
and v.

• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a

path between u and v and from v to u.

• Connected Component (of u): The set of all vertices connected to u.

• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.

Graphs

• Definition: A set of vertices V connected by a set of edges E. Individual
edges are notated as (u, v), where u, v ∈ V .

• They are usually represented as adjacency lists or adjacency matrices
• Directed: Each edge (u, v) ∈ E now has a direction u → v
• Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive

vertices have an edge

• Cycle: A sequence of distinct vertices where each pair of consecutive

vertices have an edge and the first and last vertices are connected.

• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u
and v.

• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a

path between u and v and from v to u.

• Connected Component (of u): The set of all vertices connected to u.

• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.

Graphs

• Definition: A set of vertices V connected by a set of edges E. Individual
edges are notated as (u, v), where u, v ∈ V .

• They are usually represented as adjacency lists or adjacency matrices
• Directed: Each edge (u, v) ∈ E now has a direction u → v
• Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive

vertices have an edge

• Cycle: A sequence of distinct vertices where each pair of consecutive

vertices have an edge and the first and last vertices are connected.

• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u
and v.

• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a

path between u and v and from v to u.

• Connected Component (of u): The set of all vertices connected to u.

• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.

Graphs

• Definition: A set of vertices V connected by a set of edges E. Individual
edges are notated as (u, v), where u, v ∈ V .

• They are usually represented as adjacency lists or adjacency matrices
• Directed: Each edge (u, v) ∈ E now has a direction u → v
• Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive

vertices have an edge

• Cycle: A sequence of distinct vertices where each pair of consecutive

vertices have an edge and the first and last vertices are connected.

• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u
and v.

• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a

path between u and v and from v to u.

• Connected Component (of u): The set of all vertices connected to u.

• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.

Graphs

• Definition: A set of vertices V connected by a set of edges E. Individual
edges are notated as (u, v), where u, v ∈ V .

• They are usually represented as adjacency lists or adjacency matrices
• Directed: Each edge (u, v) ∈ E now has a direction u → v
• Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive

vertices have an edge

• Cycle: A sequence of distinct vertices where each pair of consecutive

vertices have an edge and the first and last vertices are connected.

• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u
and v.

• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a

path between u and v and from v to u.

• Connected Component (of u): The set of all vertices connected to u.

• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.

Graphs

• Definition: A set of vertices V connected by a set of edges E. Individual
edges are notated as (u, v), where u, v ∈ V .

• They are usually represented as adjacency lists or adjacency matrices
• Directed: Each edge (u, v) ∈ E now has a direction u → v
• Acyclic: No cycles.

• Path: A sequence of distinct vertices where each pair of consecutive

vertices have an edge

• Cycle: A sequence of distinct vertices where each pair of consecutive

vertices have an edge and the first and last vertices are connected.

• Connected: u, v ∈ V are connected ⇐⇒ there exists a path between u
and v.

• Strongly Connected: u, v ∈ V are strongly connected ⇐⇒ there exists a

path between u and v and from v to u.

• Connected Component (of u): The set of all vertices connected to u.

• Strongly Connected Component: A set of vertices a strongly connected

component if each pair of vertices are strongly connected.

Graph Algorithms: Traversal

• BFS:
• Purpose: Reachability, Shortest Path (unweighted graph)
• Implementation details: Add your neighbours to a queue, pop from the queue
to get next node

• Runtime: O(V + E)

• DFS:
• Purpose: Reachability, toposort
• Implementation details: Add your neighbours to a stack, pop from the stack to
get next node

• Runtime: O(V + E)

Graph Algorithms: Traversal

• BFS:
• Purpose: Reachability, Shortest Path (unweighted graph)
• Implementation details: Add your neighbours to a queue, pop from the queue
to get next node

• Runtime: O(V + E)

• DFS:
• Purpose: Reachability, toposort
• Implementation details: Add your neighbours to a stack, pop from the stack to
get next node

• Runtime: O(V + E)

Graph Algorithms: Traversal

• BFS:
• Purpose: Reachability, Shortest Path (unweighted graph)
• Implementation details: Add your neighbours to a queue, pop from the queue
to get next node

• Runtime: O(V + E)

• DFS:
• Purpose: Reachability, toposort
• Implementation details: Add your neighbours to a stack, pop from the stack to
get next node

• Runtime: O(V + E)

Graph Algorithms: Shortest Path

• Dijkstra’s
• Purpose: SSSP, no negative edges
• Implementation: Visit neighbours in priority queue
• Runtime: O(m+ n logn)

• Bellman-Ford:
• Purpose: SSSP, yes negative weights. Will detect negative cycles.
• Implementation: Dynamic Programming recurrence
• Runtime: O(mn)

• Floyd-Warshall:
• Purpose: APSP, yes negative edge weights
• Implementation: Dynamic Programming recurrence
• Runtime: O(n3)

Graph Algorithms: Shortest Path

• Dijkstra’s
• Purpose: SSSP, no negative edges
• Implementation: Visit neighbours in priority queue
• Runtime: O(m+ n logn)

• Bellman-Ford:
• Purpose: SSSP, yes negative weights. Will detect negative cycles.
• Implementation: Dynamic Programming recurrence
• Runtime: O(mn)

• Floyd-Warshall:
• Purpose: APSP, yes negative edge weights
• Implementation: Dynamic Programming recurrence
• Runtime: O(n3)

Graph Algorithms: Shortest Path

• Dijkstra’s
• Purpose: SSSP, no negative edges
• Implementation: Visit neighbours in priority queue
• Runtime: O(m+ n logn)

• Bellman-Ford:
• Purpose: SSSP, yes negative weights. Will detect negative cycles.
• Implementation: Dynamic Programming recurrence
• Runtime: O(mn)

• Floyd-Warshall:
• Purpose: APSP, yes negative edge weights
• Implementation: Dynamic Programming recurrence
• Runtime: O(n3)

Graph Algorithms: Shortest Path

• Dijkstra’s
• Purpose: SSSP, no negative edges
• Implementation: Visit neighbours in priority queue
• Runtime: O(m+ n logn)

• Bellman-Ford:
• Purpose: SSSP, yes negative weights. Will detect negative cycles.
• Implementation: Dynamic Programming recurrence
• Runtime: O(mn)

• Floyd-Warshall:
• Purpose: APSP, yes negative edge weights
• Implementation: Dynamic Programming recurrence
• Runtime: O(n3)

Graph Algorithms: MSTs

3 main algorithms:

• Prim-Jarnik: Keep a priority queue for edges to be added to the tree. Start

the tree at some arbitrarily selected root vertex. When adding a vertex,

add all of its neighbors to the queue. Runtime: O(|E| log |V |),
O(|V | log |V |+ |E|) using Quake heaps.

• Kruskal: Keep a disjoint-sets data structure to keep track of connected

components. Sort the edges, then in order, add each edge if it connects

two components. Runtime: O(|E| log |V |).
• Borůvka: No fancy data structures! Just find smallest edge going out of

each vertex, then contract all edges that you selected! Runtime:

O(|E| log |V |)
• Faster (but way more complicated algorithms) exist. Yao (1975):

O(|E| log log |V |) with a modification of Borůvka’s (using linear-time median

selection). Karger-Klein-Tarjan (1995): O(|E|) in expectation, Chazelle

(2000): O(|E|α(|V |, |E|)) deterministic

Graph Algorithms: MSTs

3 main algorithms:

• Prim-Jarnik: Keep a priority queue for edges to be added to the tree. Start

the tree at some arbitrarily selected root vertex. When adding a vertex,

add all of its neighbors to the queue. Runtime: O(|E| log |V |),
O(|V | log |V |+ |E|) using Quake heaps.

• Kruskal: Keep a disjoint-sets data structure to keep track of connected

components. Sort the edges, then in order, add each edge if it connects

two components. Runtime: O(|E| log |V |).

• Borůvka: No fancy data structures! Just find smallest edge going out of

each vertex, then contract all edges that you selected! Runtime:

O(|E| log |V |)
• Faster (but way more complicated algorithms) exist. Yao (1975):

O(|E| log log |V |) with a modification of Borůvka’s (using linear-time median

selection). Karger-Klein-Tarjan (1995): O(|E|) in expectation, Chazelle

(2000): O(|E|α(|V |, |E|)) deterministic

Graph Algorithms: MSTs

3 main algorithms:

• Prim-Jarnik: Keep a priority queue for edges to be added to the tree. Start

the tree at some arbitrarily selected root vertex. When adding a vertex,

add all of its neighbors to the queue. Runtime: O(|E| log |V |),
O(|V | log |V |+ |E|) using Quake heaps.

• Kruskal: Keep a disjoint-sets data structure to keep track of connected

components. Sort the edges, then in order, add each edge if it connects

two components. Runtime: O(|E| log |V |).
• Borůvka: No fancy data structures! Just find smallest edge going out of

each vertex, then contract all edges that you selected! Runtime:

O(|E| log |V |)

• Faster (but way more complicated algorithms) exist. Yao (1975):

O(|E| log log |V |) with a modification of Borůvka’s (using linear-time median

selection). Karger-Klein-Tarjan (1995): O(|E|) in expectation, Chazelle

(2000): O(|E|α(|V |, |E|)) deterministic

Graph Algorithms: MSTs

3 main algorithms:

• Prim-Jarnik: Keep a priority queue for edges to be added to the tree. Start

the tree at some arbitrarily selected root vertex. When adding a vertex,

add all of its neighbors to the queue. Runtime: O(|E| log |V |),
O(|V | log |V |+ |E|) using Quake heaps.

• Kruskal: Keep a disjoint-sets data structure to keep track of connected

components. Sort the edges, then in order, add each edge if it connects

two components. Runtime: O(|E| log |V |).
• Borůvka: No fancy data structures! Just find smallest edge going out of

each vertex, then contract all edges that you selected! Runtime:

O(|E| log |V |)
• Faster (but way more complicated algorithms) exist. Yao (1975):

O(|E| log log |V |) with a modification of Borůvka’s (using linear-time median

selection). Karger-Klein-Tarjan (1995): O(|E|) in expectation, Chazelle

(2000): O(|E|α(|V |, |E|)) deterministic

Graph Algorithms: SCC

SCC-Finding Algorithms (Tarjan’s, Kosuraju’s)

• Purpose: To identify (and collapse) SCCs in a (directed) graph

• Runtime: O(V + E)

• Returns: A metagraph that has one node for each SCC.

Graph Problems: General Stuff

How to solve graph problems:

1. Identify type of problem (Reachability, Shortest Path, SCC)

2. Construct new graph
• Add sources/sinks
• Add vertices via V ′ = V × {some set} (Useful for tracking states)
• Add vertices via E′ = E × {some set} (Useful for allowing/prohibit certain
behaviour)

3. Apply some stock algorithm

4. Draw connection between how to result of the algorithm upon the new

graph relates to the solution of the original question.

Recurrences and Asymptotics

Give a tight asymptotic bound for each recurrence:

• T (n) = 4 T (n
2
) + n log2 n

• T (n) = T (3n
4
) + T (n

4
) + 5n

• T (n) = 9 T (n
3
) + n2

Group the following functions s.t. f and g are in the same group if

f(x) ∼ Θ(g(x)), and sort the groups by runtime:

• nn

• log logn

• 374n

• n!

• log(n+ n374)

• lognn

• n1.000001

• 2n

• n logn5

• 1
logn 2

Recurrences and Asymptotics

Give a tight asymptotic bound for each recurrence:

• T (n) = 4 T (n
2
) + n log2 n

• T (n) = T (3n
4
) + T (n

4
) + 5n

• T (n) = 9 T (n
3
) + n2

Group the following functions s.t. f and g are in the same group if

f(x) ∼ Θ(g(x)), and sort the groups by runtime:

• nn

• log logn

• 374n

• n!

• log(n+ n374)

• lognn

• n1.000001

• 2n

• n logn5

• 1
logn 2

Recurrences and Asymptotics

Give a tight asymptotic bound for each recurrence:

• T (n) = 4 T (n
2
) + n log2 n

• T (n) = T (3n
4
) + T (n

4
) + 5n

• T (n) = 9 T (n
3
) + n2

Group the following functions s.t. f and g are in the same group if

f(x) ∼ Θ(g(x)), and sort the groups by runtime:

• nn

• log logn

• 374n

• n!

• log(n+ n374)

• lognn

• n1.000001

• 2n

• n logn5

• 1
logn 2

Recurrences and Asymptotics

Give a tight asymptotic bound for each recurrence:

• T (n) = 4 T (n
2
) + n log2 n

• T (n) = T (3n
4
) + T (n

4
) + 5n

• T (n) = 9 T (n
3
) + n2

Group the following functions s.t. f and g are in the same group if

f(x) ∼ Θ(g(x)), and sort the groups by runtime:

• nn

• log logn

• 374n

• n!

• log(n+ n374)

• lognn

• n1.000001

• 2n

• n logn5

• 1
logn 2

Divide and Conquer

Consider the following (correct!) in-place sorting algorithm:

1: procedure StoogeSort(A[1 . . . n])
2: If A[1] > A[n], swap them.

3: if n ≥ 3 then
4: StoogeSort the initial 2/3 of A
5: StoogeSort the final 2/3 of A
6: StoogeSort the initial 2/3 of A (again)

Give a tight asymptotic bound on the runtime of StoogeSort, in terms of n.

Graphs

Given a program represented as a directed graph G = (V,E) and function

R where:

- Each vertex v ∈ V represents a function

- Each edge u → v ∈ E represents that function u can call v internally

- R(v) represents the ”resource” that function v has exclusive access to

during execution. R(v) ∈ {1, 2, . . . k}.
You are given the ”main function” s ∈ V . Considering that an execution

path cannot have two functions using the same resource at the same

time, write an algorithm to find the setD ⊆ V of functions that could not

possibly be called as a result of running s.

Dynamic Programming

You are given an array of integers A[1..2n]. On each turn, you choose two

arbitrary integers with no other numbered integers between them. You

then earn points equal to the division of your two chosen numbers, and

both chosen integers are removed. Once a square is removed, it cannot

be chosen in any future turns. Your goal is to remove all of the numbers

and to earn as many points as possible. Describe an algorithm to find the

maximum number of points you can earn in a game.

4 3 6 5 9 1 2 3 7 3 4 8

4 3 6 5 9 1 2 3 4 8

4 3 6 5 2 3 4 8

4 3 6 3 4 8

4 3 4 8

4 8

+ 7
3
points!

+ 9
1
points!

+ 5
2
points!

+ 6
3
points!

+ 4
3
points!

+ 4
8
points!

All done!

Graphs

It’s late at night, and you’re walking home. You have a graph G = (V,E)
describing Champaign’s road network, with each edge annotated as to

whether or not the edge is lit by streetlights. Describe and analyze an

efficient algorithm to calculate the shortest s → t path for a given (s, t),
where at most k edges are unlit.

