
CS 374B Review MT3
Turing Complete Spookiness

ACM @ UIUC

November 3, 2024

Disclaimers and Logistics

• Disclaimer: Some of us are CAs, but we have not seen the exam. We have no
idea what the questions are. However, we’ve taken the course and reviewed
Kani’s previous exams, so we have suspicions as to what the questions will be
like.
• This review session is being recorded. Recordings and slides will be distributed

on EdStem after the end.
• Agenda: We’ll quickly review all topics likely to be covered, then go through a

practice exam, then review individual topics by request.
◦ Questions are designed to be written in the same style as Kani’s previous

exams but to be slightly harder, so don’t worry if you don’t get everything right
away!

• Please let us know if we’re going too fast/slow, not speaking loud
enough/speaking too loud, etc.
• If you have a question anytime during the review session, please ask! Someone

else almost surely has a similar question.
• We’ll provide a feedback form at the end of the session.

P and NP

• A decision problem is a problem with a true/false answer. (yes/no, etc.)
• P is the set of decision problems with a polynomial-time solver.
• NP is the set of decision problems with a polynomial-time nondeterministic solver.
• Alternatively, NP is the set of decision problems with a polynomial-time certifier

for "true" answers, given a polynomial-size certificate.
◦ Intuitively, with an NP problem, we can verify a "yes" answer quickly if we have

the solution in front of us.

For example, consider the yes/no problem of deciding whether a graph G = (V ,E)
has a path containing all its vertices. (Hamiltonian Path)
• If you were given the path already (O(V) length) as a certificate, you could certify

that the answer is "yes" in polynomial time.
• Therefore, this problem is in NP.

Formally, an algorithm C is a certifier for problem X when s ∈ X if and only if there
exists string t such that C(s, t) = true.
• t here is a "certificate."
• We can show X is NP by providing this information, and showing C is

polynomial-time and t is polynomial-size (with respect to the size of the input s).

P and NP

• A decision problem is a problem with a true/false answer. (yes/no, etc.)
• P is the set of decision problems with a polynomial-time solver.
• NP is the set of decision problems with a polynomial-time nondeterministic solver.
• Alternatively, NP is the set of decision problems with a polynomial-time certifier

for "true" answers, given a polynomial-size certificate.
◦ Intuitively, with an NP problem, we can verify a "yes" answer quickly if we have

the solution in front of us.

For example, consider the yes/no problem of deciding whether a graph G = (V ,E)
has a path containing all its vertices. (Hamiltonian Path)
• If you were given the path already (O(V) length) as a certificate, you could certify

that the answer is "yes" in polynomial time.
• Therefore, this problem is in NP.

Formally, an algorithm C is a certifier for problem X when s ∈ X if and only if there
exists string t such that C(s, t) = true.
• t here is a "certificate."
• We can show X is NP by providing this information, and showing C is

polynomial-time and t is polynomial-size (with respect to the size of the input s).

P and NP

• A decision problem is a problem with a true/false answer. (yes/no, etc.)
• P is the set of decision problems with a polynomial-time solver.
• NP is the set of decision problems with a polynomial-time nondeterministic solver.
• Alternatively, NP is the set of decision problems with a polynomial-time certifier

for "true" answers, given a polynomial-size certificate.
◦ Intuitively, with an NP problem, we can verify a "yes" answer quickly if we have

the solution in front of us.

For example, consider the yes/no problem of deciding whether a graph G = (V ,E)
has a path containing all its vertices. (Hamiltonian Path)
• If you were given the path already (O(V) length) as a certificate, you could certify

that the answer is "yes" in polynomial time.
• Therefore, this problem is in NP.

Formally, an algorithm C is a certifier for problem X when s ∈ X if and only if there
exists string t such that C(s, t) = true.
• t here is a "certificate."
• We can show X is NP by providing this information, and showing C is

polynomial-time and t is polynomial-size (with respect to the size of the input s).

co-NP

• co-NP is the set of decision problems X whose complements X are in NP.
• Alternatively, NP is the set of decision problems with a polynomial-time certifier

for "false" answers, given a polynomial-size certificate.
• For example, the problem of deciding whether a graph doesn’t have a

Hamiltonian path is in co-NP.
co-NP isn’t on your skillset, but be aware that this is not the same thing as NP.

Reductions I: Intuition

• Intuition: Problem B is “at least as hard” than problem A if we can use a
black-box problem B solver (B oracle) to solve problem A with limited overhead
(generally, polynomial-time).

• We know a variety of “hard” problems, so if we want to show that a problem B is
hard, we need to show that oracles can be used to quickly solve some hard
problem A (even if we believe that that oracle doesn’t exist!). This is building a
reduction from problem A to problem B
• A problem is NP-hard if the existence of a polynomial-time algorithm for that

problem would imply the existence of a polynomial-time algorithm for any problem
in NP. We’ll prove that problems are NP-hard by providing polynomial-time
reductions from a known NP-hard problem to the problem in question.
◦ NP-complete problems are NP and NP-hard.

• A problem is undecidable if no algorithm exists that always completes in the
right answer. We’ll prove that problems are undecidable by providing reductions
from a known undecidable problem to the problem in question.

Make sure you’re going in the right direction!

If you’re trying to prove that a problem is NP-hard or undecidable, you need to
reduce from an NP-hard/undecidable problem to the problem you want to prove is
hard (in other words, show that an oracle for your problem can be used to solve an
NP-hard/undecidable problem). The most common mistake on exams is reducing in
the wrong direction.

Reductions I: Intuition

• Intuition: Problem B is “at least as hard” than problem A if we can use a
black-box problem B solver (B oracle) to solve problem A with limited overhead
(generally, polynomial-time).
• We know a variety of “hard” problems, so if we want to show that a problem B is

hard, we need to show that oracles can be used to quickly solve some hard
problem A (even if we believe that that oracle doesn’t exist!). This is building a
reduction from problem A to problem B

• A problem is NP-hard if the existence of a polynomial-time algorithm for that
problem would imply the existence of a polynomial-time algorithm for any problem
in NP. We’ll prove that problems are NP-hard by providing polynomial-time
reductions from a known NP-hard problem to the problem in question.
◦ NP-complete problems are NP and NP-hard.

• A problem is undecidable if no algorithm exists that always completes in the
right answer. We’ll prove that problems are undecidable by providing reductions
from a known undecidable problem to the problem in question.

Make sure you’re going in the right direction!

If you’re trying to prove that a problem is NP-hard or undecidable, you need to
reduce from an NP-hard/undecidable problem to the problem you want to prove is
hard (in other words, show that an oracle for your problem can be used to solve an
NP-hard/undecidable problem). The most common mistake on exams is reducing in
the wrong direction.

Reductions I: Intuition

• Intuition: Problem B is “at least as hard” than problem A if we can use a
black-box problem B solver (B oracle) to solve problem A with limited overhead
(generally, polynomial-time).
• We know a variety of “hard” problems, so if we want to show that a problem B is

hard, we need to show that oracles can be used to quickly solve some hard
problem A (even if we believe that that oracle doesn’t exist!). This is building a
reduction from problem A to problem B
• A problem is NP-hard if the existence of a polynomial-time algorithm for that

problem would imply the existence of a polynomial-time algorithm for any problem
in NP. We’ll prove that problems are NP-hard by providing polynomial-time
reductions from a known NP-hard problem to the problem in question.
◦ NP-complete problems are NP and NP-hard.

• A problem is undecidable if no algorithm exists that always completes in the
right answer. We’ll prove that problems are undecidable by providing reductions
from a known undecidable problem to the problem in question.

Make sure you’re going in the right direction!

If you’re trying to prove that a problem is NP-hard or undecidable, you need to
reduce from an NP-hard/undecidable problem to the problem you want to prove is
hard (in other words, show that an oracle for your problem can be used to solve an
NP-hard/undecidable problem). The most common mistake on exams is reducing in
the wrong direction.

Reductions I: Intuition

• Intuition: Problem B is “at least as hard” than problem A if we can use a
black-box problem B solver (B oracle) to solve problem A with limited overhead
(generally, polynomial-time).
• We know a variety of “hard” problems, so if we want to show that a problem B is

hard, we need to show that oracles can be used to quickly solve some hard
problem A (even if we believe that that oracle doesn’t exist!). This is building a
reduction from problem A to problem B
• A problem is NP-hard if the existence of a polynomial-time algorithm for that

problem would imply the existence of a polynomial-time algorithm for any problem
in NP. We’ll prove that problems are NP-hard by providing polynomial-time
reductions from a known NP-hard problem to the problem in question.
◦ NP-complete problems are NP and NP-hard.

• A problem is undecidable if no algorithm exists that always completes in the
right answer. We’ll prove that problems are undecidable by providing reductions
from a known undecidable problem to the problem in question.

Make sure you’re going in the right direction!

If you’re trying to prove that a problem is NP-hard or undecidable, you need to
reduce from an NP-hard/undecidable problem to the problem you want to prove is
hard (in other words, show that an oracle for your problem can be used to solve an
NP-hard/undecidable problem). The most common mistake on exams is reducing in
the wrong direction.

Reductions I: Intuition

• Intuition: Problem B is “at least as hard” than problem A if we can use a
black-box problem B solver (B oracle) to solve problem A with limited overhead
(generally, polynomial-time).
• We know a variety of “hard” problems, so if we want to show that a problem B is

hard, we need to show that oracles can be used to quickly solve some hard
problem A (even if we believe that that oracle doesn’t exist!). This is building a
reduction from problem A to problem B
• A problem is NP-hard if the existence of a polynomial-time algorithm for that

problem would imply the existence of a polynomial-time algorithm for any problem
in NP. We’ll prove that problems are NP-hard by providing polynomial-time
reductions from a known NP-hard problem to the problem in question.
◦ NP-complete problems are NP and NP-hard.

• A problem is undecidable if no algorithm exists that always completes in the
right answer. We’ll prove that problems are undecidable by providing reductions
from a known undecidable problem to the problem in question.

Make sure you’re going in the right direction!

If you’re trying to prove that a problem is NP-hard or undecidable, you need to
reduce from an NP-hard/undecidable problem to the problem you want to prove is
hard (in other words, show that an oracle for your problem can be used to solve an
NP-hard/undecidable problem). The most common mistake on exams is reducing in
the wrong direction.

Reductions II: Tutorial

• To show a problem is NP-hard/undecidable you need to do the following:

1. Consider an oracle for the problem that you’re reducing to. If you’re showing
that something is NP-hard, you should assume that the oracle is
polynomial-time

2. Provide an algorithm for the problem that you’re reducing to using the problem
that you’re reducing from.

3. Analyze the runtime for your algorithm, and show it is within your target.
4. Provide a proof of correctness.
• We’re mostly going to be talking about decision variants of problems (where

you only need to return YES/NO) since the main complexity classes are defined
with respect to them, and since, usually, decision variants are equally hard as
their calculation equivalents

Template- Reduction

Assume that there exists an oracle function B which runs in [TIME CONSTRAINT].
Thus, we can solve A as follows:

1: procedure A(input):
2: Do some preprocessing to create instances of problem B
3: outputs← B(generated inputs)
4: Do some postprocessing on outputs to get the correct answer for A

Reductions II: Tutorial

• To show a problem is NP-hard/undecidable you need to do the following:
1. Consider an oracle for the problem that you’re reducing to. If you’re showing

that something is NP-hard, you should assume that the oracle is
polynomial-time

2. Provide an algorithm for the problem that you’re reducing to using the problem
that you’re reducing from.

3. Analyze the runtime for your algorithm, and show it is within your target.
4. Provide a proof of correctness.
• We’re mostly going to be talking about decision variants of problems (where

you only need to return YES/NO) since the main complexity classes are defined
with respect to them, and since, usually, decision variants are equally hard as
their calculation equivalents

Template- Reduction

Assume that there exists an oracle function B which runs in [TIME CONSTRAINT].
Thus, we can solve A as follows:

1: procedure A(input):
2: Do some preprocessing to create instances of problem B
3: outputs← B(generated inputs)
4: Do some postprocessing on outputs to get the correct answer for A

Reductions II: Tutorial

• To show a problem is NP-hard/undecidable you need to do the following:
1. Consider an oracle for the problem that you’re reducing to. If you’re showing

that something is NP-hard, you should assume that the oracle is
polynomial-time

2. Provide an algorithm for the problem that you’re reducing to using the problem
that you’re reducing from.

3. Analyze the runtime for your algorithm, and show it is within your target.
4. Provide a proof of correctness.
• We’re mostly going to be talking about decision variants of problems (where

you only need to return YES/NO) since the main complexity classes are defined
with respect to them, and since, usually, decision variants are equally hard as
their calculation equivalents

Template- Reduction

Assume that there exists an oracle function B which runs in [TIME CONSTRAINT].
Thus, we can solve A as follows:

1: procedure A(input):
2: Do some preprocessing to create instances of problem B
3: outputs← B(generated inputs)
4: Do some postprocessing on outputs to get the correct answer for A

Reductions II: Tutorial

• To show a problem is NP-hard/undecidable you need to do the following:
1. Consider an oracle for the problem that you’re reducing to. If you’re showing

that something is NP-hard, you should assume that the oracle is
polynomial-time

2. Provide an algorithm for the problem that you’re reducing to using the problem
that you’re reducing from.

3. Analyze the runtime for your algorithm, and show it is within your target.

4. Provide a proof of correctness.
• We’re mostly going to be talking about decision variants of problems (where

you only need to return YES/NO) since the main complexity classes are defined
with respect to them, and since, usually, decision variants are equally hard as
their calculation equivalents

Template- Reduction

Assume that there exists an oracle function B which runs in [TIME CONSTRAINT].
Thus, we can solve A as follows:

1: procedure A(input):
2: Do some preprocessing to create instances of problem B
3: outputs← B(generated inputs)
4: Do some postprocessing on outputs to get the correct answer for A

Reductions II: Tutorial

• To show a problem is NP-hard/undecidable you need to do the following:
1. Consider an oracle for the problem that you’re reducing to. If you’re showing

that something is NP-hard, you should assume that the oracle is
polynomial-time

2. Provide an algorithm for the problem that you’re reducing to using the problem
that you’re reducing from.

3. Analyze the runtime for your algorithm, and show it is within your target.
4. Provide a proof of correctness.

• We’re mostly going to be talking about decision variants of problems (where
you only need to return YES/NO) since the main complexity classes are defined
with respect to them, and since, usually, decision variants are equally hard as
their calculation equivalents

Template- Reduction

Assume that there exists an oracle function B which runs in [TIME CONSTRAINT].
Thus, we can solve A as follows:

1: procedure A(input):
2: Do some preprocessing to create instances of problem B
3: outputs← B(generated inputs)
4: Do some postprocessing on outputs to get the correct answer for A

Reductions II: Tutorial

• To show a problem is NP-hard/undecidable you need to do the following:
1. Consider an oracle for the problem that you’re reducing to. If you’re showing

that something is NP-hard, you should assume that the oracle is
polynomial-time

2. Provide an algorithm for the problem that you’re reducing to using the problem
that you’re reducing from.

3. Analyze the runtime for your algorithm, and show it is within your target.
4. Provide a proof of correctness.
• We’re mostly going to be talking about decision variants of problems (where

you only need to return YES/NO) since the main complexity classes are defined
with respect to them, and since, usually, decision variants are equally hard as
their calculation equivalents

Template- Reduction

Assume that there exists an oracle function B which runs in [TIME CONSTRAINT].
Thus, we can solve A as follows:

1: procedure A(input):
2: Do some preprocessing to create instances of problem B
3: outputs← B(generated inputs)
4: Do some postprocessing on outputs to get the correct answer for A

Reductions II: Tutorial

• To show a problem is NP-hard/undecidable you need to do the following:
1. Consider an oracle for the problem that you’re reducing to. If you’re showing

that something is NP-hard, you should assume that the oracle is
polynomial-time

2. Provide an algorithm for the problem that you’re reducing to using the problem
that you’re reducing from.

3. Analyze the runtime for your algorithm, and show it is within your target.
4. Provide a proof of correctness.
• We’re mostly going to be talking about decision variants of problems (where

you only need to return YES/NO) since the main complexity classes are defined
with respect to them, and since, usually, decision variants are equally hard as
their calculation equivalents

Template- Reduction

Assume that there exists an oracle function B which runs in [TIME CONSTRAINT].
Thus, we can solve A as follows:

1: procedure A(input):
2: Do some preprocessing to create instances of problem B
3: outputs← B(generated inputs)
4: Do some postprocessing on outputs to get the correct answer for A

A Tour of NP-Hard Problems:
CircuitSAT and 3SAT

• CircuitSAT: The “original” NP-complete problem. Given a boolean circuit, is
there a set of inputs that makes it return true?

• 3SAT: Given a boolean formula of the form (a ∨ b ∨ c) ∧ (a ∨ d ∨ e) ∧ · · · , is
there an assignment to the input variables that makes it return true?
• Consider reducing from 3SAT if. . . :
◦ There’s some structure of choice within the problem (i.e. the goal is to decide

either A or B)
◦ There’s a 3 in the problem, and you don’t know why

Be careful with k -SAT variants!

While k -SAT for k ≥ 3 is NP-complete, there is a polynomial-time algorithm for
2SAT. (Using strongly connected components!)

A Tour of NP-Hard Problems:
CircuitSAT and 3SAT

• CircuitSAT: The “original” NP-complete problem. Given a boolean circuit, is
there a set of inputs that makes it return true?

• 3SAT: Given a boolean formula of the form (a ∨ b ∨ c) ∧ (a ∨ d ∨ e) ∧ · · · , is
there an assignment to the input variables that makes it return true?

• Consider reducing from 3SAT if. . . :
◦ There’s some structure of choice within the problem (i.e. the goal is to decide

either A or B)
◦ There’s a 3 in the problem, and you don’t know why

Be careful with k -SAT variants!

While k -SAT for k ≥ 3 is NP-complete, there is a polynomial-time algorithm for
2SAT. (Using strongly connected components!)

A Tour of NP-Hard Problems:
CircuitSAT and 3SAT

• CircuitSAT: The “original” NP-complete problem. Given a boolean circuit, is
there a set of inputs that makes it return true?

• 3SAT: Given a boolean formula of the form (a ∨ b ∨ c) ∧ (a ∨ d ∨ e) ∧ · · · , is
there an assignment to the input variables that makes it return true?
• Consider reducing from 3SAT if. . . :

◦ There’s some structure of choice within the problem (i.e. the goal is to decide
either A or B)
◦ There’s a 3 in the problem, and you don’t know why

Be careful with k -SAT variants!

While k -SAT for k ≥ 3 is NP-complete, there is a polynomial-time algorithm for
2SAT. (Using strongly connected components!)

A Tour of NP-Hard Problems:
CircuitSAT and 3SAT

• CircuitSAT: The “original” NP-complete problem. Given a boolean circuit, is
there a set of inputs that makes it return true?

• 3SAT: Given a boolean formula of the form (a ∨ b ∨ c) ∧ (a ∨ d ∨ e) ∧ · · · , is
there an assignment to the input variables that makes it return true?
• Consider reducing from 3SAT if. . . :
◦ There’s some structure of choice within the problem (i.e. the goal is to decide

either A or B)

◦ There’s a 3 in the problem, and you don’t know why

Be careful with k -SAT variants!

While k -SAT for k ≥ 3 is NP-complete, there is a polynomial-time algorithm for
2SAT. (Using strongly connected components!)

A Tour of NP-Hard Problems:
CircuitSAT and 3SAT

• CircuitSAT: The “original” NP-complete problem. Given a boolean circuit, is
there a set of inputs that makes it return true?

• 3SAT: Given a boolean formula of the form (a ∨ b ∨ c) ∧ (a ∨ d ∨ e) ∧ · · · , is
there an assignment to the input variables that makes it return true?
• Consider reducing from 3SAT if. . . :
◦ There’s some structure of choice within the problem (i.e. the goal is to decide

either A or B)
◦ There’s a 3 in the problem, and you don’t know why

Be careful with k -SAT variants!

While k -SAT for k ≥ 3 is NP-complete, there is a polynomial-time algorithm for
2SAT. (Using strongly connected components!)

A Tour of NP-Hard Problems:
CircuitSAT and 3SAT

• CircuitSAT: The “original” NP-complete problem. Given a boolean circuit, is
there a set of inputs that makes it return true?

• 3SAT: Given a boolean formula of the form (a ∨ b ∨ c) ∧ (a ∨ d ∨ e) ∧ · · · , is
there an assignment to the input variables that makes it return true?
• Consider reducing from 3SAT if. . . :
◦ There’s some structure of choice within the problem (i.e. the goal is to decide

either A or B)
◦ There’s a 3 in the problem, and you don’t know why

Be careful with k -SAT variants!

While k -SAT for k ≥ 3 is NP-complete, there is a polynomial-time algorithm for
2SAT. (Using strongly connected components!)

A Tour of NP-Hard Problems:
CircuitSAT and 3SAT

Consider the problem MajSAT: Clauses now consist of 5 literals, and you must
satisfy at least 3 literals in each clause. Is MajSAT in NP, NP-hard, both, or neither?
Prove why by either stating an algorithm or providing a reduction.

A Tour of NP-Hard Problems:
Max{Clique, IndSet}, MinVertexCover

• MaxClique: Given a graph G and positive integer h, can we find a Kh subgraph
in G (i.e. a set of h nodes where each one has an edge to every other)?

1

2

5

3

4

6 7

• MaxIndSet: Given a graph G and positive integer h, can we find a set of h
nodes, none of which share an edge?

1

2

5

3

4

6 7

• MinVertexCover: Given a graph G and positive integer h, can we find a set of h
nodes so that all edges have at least one endpoint chosen?

1

2

5

3

4

6 7

A Tour of NP-Hard Problems:
Max{Clique, IndSet}, MinVertexCover

• MaxClique: Given a graph G and positive integer h, can we find a Kh subgraph
in G (i.e. a set of h nodes where each one has an edge to every other)?

1

2

5

3

4

6 7

• MaxIndSet: Given a graph G and positive integer h, can we find a set of h
nodes, none of which share an edge?

1

2

5

3

4

6 7

• MinVertexCover: Given a graph G and positive integer h, can we find a set of h
nodes so that all edges have at least one endpoint chosen?

1

2

5

3

4

6 7

A Tour of NP-Hard Problems:
Max{Clique, IndSet}, MinVertexCover

• MaxClique: Given a graph G and positive integer h, can we find a Kh subgraph
in G (i.e. a set of h nodes where each one has an edge to every other)?

1

2

5

3

4

6 7

• MaxIndSet: Given a graph G and positive integer h, can we find a set of h
nodes, none of which share an edge?

1

2

5

3

4

6 7

• MinVertexCover: Given a graph G and positive integer h, can we find a set of h
nodes so that all edges have at least one endpoint chosen?

1

2

5

3

4

6 7

A Tour of NP-Hard Problems:
Max{Clique, IndSet}, MinVertexCover

• MaxClique: Given a graph G and positive integer h, can we find a Kh subgraph
in G (i.e. a set of h nodes where each one has an edge to every other)?

1

2

5

3

4

6 7

• MaxIndSet: Given a graph G and positive integer h, can we find a set of h
nodes, none of which share an edge?

1

2

5

3

4

6 7

• MinVertexCover: Given a graph G and positive integer h, can we find a set of h
nodes so that all edges have at least one endpoint chosen?

1

2

5

3

4

6 7

A Tour of NP-Hard Problems:
Max{Clique, IndSet}, MinVertexCover

• MaxClique: Given a graph G and positive integer h, can we find a Kh subgraph
in G (i.e. a set of h nodes where each one has an edge to every other)?

1

2

5

3

4

6 7

• MaxIndSet: Given a graph G and positive integer h, can we find a set of h
nodes, none of which share an edge?

1

2

5

3

4

6 7

• MinVertexCover: Given a graph G and positive integer h, can we find a set of h
nodes so that all edges have at least one endpoint chosen?

1

2

5

3

4

6 7

A Tour of NP-Hard Problems:
Max{Clique, IndSet}, MinVertexCover

• MaxClique: Given a graph G and positive integer h, can we find a Kh subgraph
in G (i.e. a set of h nodes where each one has an edge to every other)?

1

2

5

3

4

6 7

• MaxIndSet: Given a graph G and positive integer h, can we find a set of h
nodes, none of which share an edge?

1

2

5

3

4

6 7

• MinVertexCover: Given a graph G and positive integer h, can we find a set of h
nodes so that all edges have at least one endpoint chosen?

1

2

5

3

4

6 7

A Tour of NP-Hard Problems:
Max{Clique, IndSet}, MinVertexCover

ACM is writing their review session for CS/ECE 374B MT3. While making slides,
each CA writes 2 problems, either alone or in collaboration with other CAs. Since all
of the CAs all have inflated egos, they won’t show up to the review session unless
one of the problems that they worked on is in the review session. Show that
determining whether we can run a review session with at most k problems is
NP-complete.

A Tour of NP-Hard Problems: Graph
Coloring

• Given an (undirected) graph, can we color the nodes with at most k colors so that
no two vertices that share an edge are of the same color?

• Consider reducing from k -coloring if. . . :
◦ You need to assign objects to groups, and assigning one object to a group

limits your choices for some local set of others
◦ There’s a graph where you need to solve for some vertex properties

Be careful with k -coloring variants!

While k -coloring for k ≥ 3 is NP-complete, you can find whether a graph is bipartite
(2-colorable) using DFS.

A Tour of NP-Hard Problems: Graph
Coloring

• Given an (undirected) graph, can we color the nodes with at most k colors so that
no two vertices that share an edge are of the same color?

• Consider reducing from k -coloring if. . . :
◦ You need to assign objects to groups, and assigning one object to a group

limits your choices for some local set of others
◦ There’s a graph where you need to solve for some vertex properties

Be careful with k -coloring variants!

While k -coloring for k ≥ 3 is NP-complete, you can find whether a graph is bipartite
(2-colorable) using DFS.

A Tour of NP-Hard Problems: Graph
Coloring

• Given an (undirected) graph, can we color the nodes with at most k colors so that
no two vertices that share an edge are of the same color?

• Consider reducing from k -coloring if. . . :

◦ You need to assign objects to groups, and assigning one object to a group
limits your choices for some local set of others
◦ There’s a graph where you need to solve for some vertex properties

Be careful with k -coloring variants!

While k -coloring for k ≥ 3 is NP-complete, you can find whether a graph is bipartite
(2-colorable) using DFS.

A Tour of NP-Hard Problems: Graph
Coloring

• Given an (undirected) graph, can we color the nodes with at most k colors so that
no two vertices that share an edge are of the same color?

• Consider reducing from k -coloring if. . . :
◦ You need to assign objects to groups, and assigning one object to a group

limits your choices for some local set of others

◦ There’s a graph where you need to solve for some vertex properties

Be careful with k -coloring variants!

While k -coloring for k ≥ 3 is NP-complete, you can find whether a graph is bipartite
(2-colorable) using DFS.

A Tour of NP-Hard Problems: Graph
Coloring

• Given an (undirected) graph, can we color the nodes with at most k colors so that
no two vertices that share an edge are of the same color?

• Consider reducing from k -coloring if. . . :
◦ You need to assign objects to groups, and assigning one object to a group

limits your choices for some local set of others
◦ There’s a graph where you need to solve for some vertex properties

Be careful with k -coloring variants!

While k -coloring for k ≥ 3 is NP-complete, you can find whether a graph is bipartite
(2-colorable) using DFS.

A Tour of NP-Hard Problems: Graph
Coloring

• Given an (undirected) graph, can we color the nodes with at most k colors so that
no two vertices that share an edge are of the same color?

• Consider reducing from k -coloring if. . . :
◦ You need to assign objects to groups, and assigning one object to a group

limits your choices for some local set of others
◦ There’s a graph where you need to solve for some vertex properties

Be careful with k -coloring variants!

While k -coloring for k ≥ 3 is NP-complete, you can find whether a graph is bipartite
(2-colorable) using DFS.

A Tour of NP-Hard Problems: Graph
Coloring

Consider the problem Safe7Color, which asks you to color a graph with 7 colors,
such that it is a violation if there is an edge u ↔ v where c(u) and c(v) differ by 0 or
1 (mod 7). Is this problem NP-hard?

A Tour of NP-Hard Problems:
Hamiltonian Paths and Cycles

• A Hamilton Path is a path that goes through each vertex exactly once. Likewise,
a Hamiltonian Cycle is a cycle that goes through each node exactly once.
◦ Every graph with a Hamiltonian cycle has a Hamiltonian path, but not every

graph with a Hamiltonian cycle has a Hamiltonian path.

• Consider reducing from HamPath or HamCycle if. . .
◦ You’re given a graph, and you’re asked to find a sequence of vertices
◦ You have a resource pool, and you want to use up everuthing

A Tour of NP-Hard Problems:
Hamiltonian Paths and Cycles

• A Hamilton Path is a path that goes through each vertex exactly once. Likewise,
a Hamiltonian Cycle is a cycle that goes through each node exactly once.
◦ Every graph with a Hamiltonian cycle has a Hamiltonian path, but not every

graph with a Hamiltonian cycle has a Hamiltonian path.

• Consider reducing from HamPath or HamCycle if. . .

◦ You’re given a graph, and you’re asked to find a sequence of vertices
◦ You have a resource pool, and you want to use up everuthing

A Tour of NP-Hard Problems:
Hamiltonian Paths and Cycles

• A Hamilton Path is a path that goes through each vertex exactly once. Likewise,
a Hamiltonian Cycle is a cycle that goes through each node exactly once.
◦ Every graph with a Hamiltonian cycle has a Hamiltonian path, but not every

graph with a Hamiltonian cycle has a Hamiltonian path.

• Consider reducing from HamPath or HamCycle if. . .
◦ You’re given a graph, and you’re asked to find a sequence of vertices

◦ You have a resource pool, and you want to use up everuthing

A Tour of NP-Hard Problems:
Hamiltonian Paths and Cycles

• A Hamilton Path is a path that goes through each vertex exactly once. Likewise,
a Hamiltonian Cycle is a cycle that goes through each node exactly once.
◦ Every graph with a Hamiltonian cycle has a Hamiltonian path, but not every

graph with a Hamiltonian cycle has a Hamiltonian path.

• Consider reducing from HamPath or HamCycle if. . .
◦ You’re given a graph, and you’re asked to find a sequence of vertices
◦ You have a resource pool, and you want to use up everuthing

A Tour of NP-Hard Problems:
Hamiltonian Paths and Cycles

A balloon graph of size ℓ is a cycle of length ℓ attached to a path of length ℓ, where
the cycle and the path are disjoint except for the connecting vertex. Show that it is
NP-hard to determine whether a graph has a balloon subgraph of size at least k .

A Tour of NP-hard Problems: Others

• These likely won’t come up on exams, but they’re useful to know.

• LongestPath: given a (directed, weighted) graph G, is there a path of length at
least k?
• IntegerLinearProgramming: given a linear objective function to optimize, as

well as linear constraints, what is the largest objective achievable where
(all/some) variables are restricted to integers?
• TravelingSalesman: given a weighted graph G, what is there a Hamiltonian path

in G of length at most k?
• SubsetSum: given a list of integers, is there a subset that sums to exactly k?
• Checkers: given a n × n checkerboard, is there a move that captures at least k

checkers?

A Tour of NP-hard Problems: Others

• These likely won’t come up on exams, but they’re useful to know.
• LongestPath: given a (directed, weighted) graph G, is there a path of length at

least k?

• IntegerLinearProgramming: given a linear objective function to optimize, as
well as linear constraints, what is the largest objective achievable where
(all/some) variables are restricted to integers?
• TravelingSalesman: given a weighted graph G, what is there a Hamiltonian path

in G of length at most k?
• SubsetSum: given a list of integers, is there a subset that sums to exactly k?
• Checkers: given a n × n checkerboard, is there a move that captures at least k

checkers?

A Tour of NP-hard Problems: Others

• These likely won’t come up on exams, but they’re useful to know.
• LongestPath: given a (directed, weighted) graph G, is there a path of length at

least k?
• IntegerLinearProgramming: given a linear objective function to optimize, as

well as linear constraints, what is the largest objective achievable where
(all/some) variables are restricted to integers?

• TravelingSalesman: given a weighted graph G, what is there a Hamiltonian path
in G of length at most k?
• SubsetSum: given a list of integers, is there a subset that sums to exactly k?
• Checkers: given a n × n checkerboard, is there a move that captures at least k

checkers?

A Tour of NP-hard Problems: Others

• These likely won’t come up on exams, but they’re useful to know.
• LongestPath: given a (directed, weighted) graph G, is there a path of length at

least k?
• IntegerLinearProgramming: given a linear objective function to optimize, as

well as linear constraints, what is the largest objective achievable where
(all/some) variables are restricted to integers?
• TravelingSalesman: given a weighted graph G, what is there a Hamiltonian path

in G of length at most k?

• SubsetSum: given a list of integers, is there a subset that sums to exactly k?
• Checkers: given a n × n checkerboard, is there a move that captures at least k

checkers?

A Tour of NP-hard Problems: Others

• These likely won’t come up on exams, but they’re useful to know.
• LongestPath: given a (directed, weighted) graph G, is there a path of length at

least k?
• IntegerLinearProgramming: given a linear objective function to optimize, as

well as linear constraints, what is the largest objective achievable where
(all/some) variables are restricted to integers?
• TravelingSalesman: given a weighted graph G, what is there a Hamiltonian path

in G of length at most k?
• SubsetSum: given a list of integers, is there a subset that sums to exactly k?

• Checkers: given a n × n checkerboard, is there a move that captures at least k
checkers?

A Tour of NP-hard Problems: Others

• These likely won’t come up on exams, but they’re useful to know.
• LongestPath: given a (directed, weighted) graph G, is there a path of length at

least k?
• IntegerLinearProgramming: given a linear objective function to optimize, as

well as linear constraints, what is the largest objective achievable where
(all/some) variables are restricted to integers?
• TravelingSalesman: given a weighted graph G, what is there a Hamiltonian path

in G of length at most k?
• SubsetSum: given a list of integers, is there a subset that sums to exactly k?
• Checkers: given a n × n checkerboard, is there a move that captures at least k

checkers?

Undecidability

• A language is decidable if there exists an algorithm which always returns true
to all inputs in L and false to inputs not in L
◦ If we can only return true to all inputs in L and either return false or

infinite-loop for all other inputs, the language is merely acceptable.

Theorem (Turing, 1936)

The language Halt: {(f ,w) : the function f does not infinite loop on input w} is
undecidable.

• 3 main ways to prove that a problem is undecidable:

1. Reduce from Halt: Given an oracle for your problem, design an algorithm to
decide Halt. No runtime requirement!

2. Rice’s Theorem: Very powerful, basically claims that any non-trivial question
about functions/Turing machines is undecidable:

Theorem (Rice)

Let L be any set of languages that satisfies the following conditions:
▶ There is a Turing machine Y such that Accept(Y) ∈ L .
▶ There is a Turing machine N such that Accept(N) ̸∈ L .

Then, the language AcceptIn(L)← {⟨M⟩ | Accept(M) ∈ L} is undecidable.

3. Abuse the fact that you can put code into a function to derive a contradiction.

Undecidability

• A language is decidable if there exists an algorithm which always returns true
to all inputs in L and false to inputs not in L
◦ If we can only return true to all inputs in L and either return false or

infinite-loop for all other inputs, the language is merely acceptable.

Theorem (Turing, 1936)

The language Halt: {(f ,w) : the function f does not infinite loop on input w} is
undecidable.

• 3 main ways to prove that a problem is undecidable:
1. Reduce from Halt: Given an oracle for your problem, design an algorithm to

decide Halt. No runtime requirement!

2. Rice’s Theorem: Very powerful, basically claims that any non-trivial question
about functions/Turing machines is undecidable:

Theorem (Rice)

Let L be any set of languages that satisfies the following conditions:
▶ There is a Turing machine Y such that Accept(Y) ∈ L .
▶ There is a Turing machine N such that Accept(N) ̸∈ L .

Then, the language AcceptIn(L)← {⟨M⟩ | Accept(M) ∈ L} is undecidable.

3. Abuse the fact that you can put code into a function to derive a contradiction.

Undecidability

• A language is decidable if there exists an algorithm which always returns true
to all inputs in L and false to inputs not in L
◦ If we can only return true to all inputs in L and either return false or

infinite-loop for all other inputs, the language is merely acceptable.

Theorem (Turing, 1936)

The language Halt: {(f ,w) : the function f does not infinite loop on input w} is
undecidable.

• 3 main ways to prove that a problem is undecidable:
1. Reduce from Halt: Given an oracle for your problem, design an algorithm to

decide Halt. No runtime requirement!
2. Rice’s Theorem: Very powerful, basically claims that any non-trivial question

about functions/Turing machines is undecidable:

Theorem (Rice)

Let L be any set of languages that satisfies the following conditions:
▶ There is a Turing machine Y such that Accept(Y) ∈ L .
▶ There is a Turing machine N such that Accept(N) ̸∈ L .

Then, the language AcceptIn(L)← {⟨M⟩ | Accept(M) ∈ L} is undecidable.

3. Abuse the fact that you can put code into a function to derive a contradiction.

Undecidability

• A language is decidable if there exists an algorithm which always returns true
to all inputs in L and false to inputs not in L
◦ If we can only return true to all inputs in L and either return false or

infinite-loop for all other inputs, the language is merely acceptable.

Theorem (Turing, 1936)

The language Halt: {(f ,w) : the function f does not infinite loop on input w} is
undecidable.

• 3 main ways to prove that a problem is undecidable:
1. Reduce from Halt: Given an oracle for your problem, design an algorithm to

decide Halt. No runtime requirement!
2. Rice’s Theorem: Very powerful, basically claims that any non-trivial question

about functions/Turing machines is undecidable:

Theorem (Rice)

Let L be any set of languages that satisfies the following conditions:
▶ There is a Turing machine Y such that Accept(Y) ∈ L .
▶ There is a Turing machine N such that Accept(N) ̸∈ L .

Then, the language AcceptIn(L)← {⟨M⟩ | Accept(M) ∈ L} is undecidable.

3. Abuse the fact that you can put code into a function to derive a contradiction.

Undecidability

For each of the following languages, either show that they are decidable by
describing an algorithm that decides them, or show that they are undecidable by
reduction and by Rice’s theorem when possible.
(a) AcceptsRegular = {⟨M⟩ : M ’s accept set is regular}

(b) HaltsQuadratically =
{
⟨M⟩, r : M halts on r in at most |r |2 arithmetic operations

}
(c) AcceptsRejects = {⟨M⟩ : M ’s accept set = M ’s reject set}
(d) CFLAccepts374 = {c ∈ CFGs : c accepts exactly 374 strings}
(e) LeftThrice = {⟨M,w⟩ : M moves left on input w three times in a row}
(f) NeverLeft = {⟨M,w⟩ : M never moves left on input w}

Undecidability

For each of the following languages, either show that they are decidable by
describing an algorithm that decides them, or show that they are undecidable by
reduction and by Rice’s theorem when possible.
(a) AcceptsRegular = {⟨M⟩ : M ’s accept set is regular}
(b) HaltsQuadratically =

{
⟨M⟩, r : M halts on r in at most |r |2 arithmetic operations

}

(c) AcceptsRejects = {⟨M⟩ : M ’s accept set = M ’s reject set}
(d) CFLAccepts374 = {c ∈ CFGs : c accepts exactly 374 strings}
(e) LeftThrice = {⟨M,w⟩ : M moves left on input w three times in a row}
(f) NeverLeft = {⟨M,w⟩ : M never moves left on input w}

Undecidability

For each of the following languages, either show that they are decidable by
describing an algorithm that decides them, or show that they are undecidable by
reduction and by Rice’s theorem when possible.
(a) AcceptsRegular = {⟨M⟩ : M ’s accept set is regular}
(b) HaltsQuadratically =

{
⟨M⟩, r : M halts on r in at most |r |2 arithmetic operations

}
(c) AcceptsRejects = {⟨M⟩ : M ’s accept set = M ’s reject set}

(d) CFLAccepts374 = {c ∈ CFGs : c accepts exactly 374 strings}
(e) LeftThrice = {⟨M,w⟩ : M moves left on input w three times in a row}
(f) NeverLeft = {⟨M,w⟩ : M never moves left on input w}

Undecidability

For each of the following languages, either show that they are decidable by
describing an algorithm that decides them, or show that they are undecidable by
reduction and by Rice’s theorem when possible.
(a) AcceptsRegular = {⟨M⟩ : M ’s accept set is regular}
(b) HaltsQuadratically =

{
⟨M⟩, r : M halts on r in at most |r |2 arithmetic operations

}
(c) AcceptsRejects = {⟨M⟩ : M ’s accept set = M ’s reject set}
(d) CFLAccepts374 = {c ∈ CFGs : c accepts exactly 374 strings}

(e) LeftThrice = {⟨M,w⟩ : M moves left on input w three times in a row}
(f) NeverLeft = {⟨M,w⟩ : M never moves left on input w}

Undecidability

For each of the following languages, either show that they are decidable by
describing an algorithm that decides them, or show that they are undecidable by
reduction and by Rice’s theorem when possible.
(a) AcceptsRegular = {⟨M⟩ : M ’s accept set is regular}
(b) HaltsQuadratically =

{
⟨M⟩, r : M halts on r in at most |r |2 arithmetic operations

}
(c) AcceptsRejects = {⟨M⟩ : M ’s accept set = M ’s reject set}
(d) CFLAccepts374 = {c ∈ CFGs : c accepts exactly 374 strings}
(e) LeftThrice = {⟨M,w⟩ : M moves left on input w three times in a row}

(f) NeverLeft = {⟨M,w⟩ : M never moves left on input w}

Undecidability

For each of the following languages, either show that they are decidable by
describing an algorithm that decides them, or show that they are undecidable by
reduction and by Rice’s theorem when possible.
(a) AcceptsRegular = {⟨M⟩ : M ’s accept set is regular}
(b) HaltsQuadratically =

{
⟨M⟩, r : M halts on r in at most |r |2 arithmetic operations

}
(c) AcceptsRejects = {⟨M⟩ : M ’s accept set = M ’s reject set}
(d) CFLAccepts374 = {c ∈ CFGs : c accepts exactly 374 strings}
(e) LeftThrice = {⟨M,w⟩ : M moves left on input w three times in a row}
(f) NeverLeft = {⟨M,w⟩ : M never moves left on input w}

Feedback

• Please fill out the feedback form:
go.acm.illinois.edu/cs374b_mt3_feedback

