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Disclaimers and Logistics

• Disclaimer: We have not seen the exam. We have no idea what the questions
are. However, we’ve taken the course and reviewed material/practice exams, so
we have suspicions as to what the questions will be like.
• This review session is being recorded. Recordings and slides will be distributed

on Piazza and the ACM site at the end.
• Agenda: We’ll review all topics likely to be covered, working through some

examples that may look like exam questions as we go, then review individual
topics by request.
◦ Questions are designed to be written in the same style as previous exams but

to be slightly harder, so don’t worry if you don’t get everything right away!
• Please let us know if we’re going too fast/slow, not speaking loud

enough/speaking too loud, etc.
• If you have a question anytime during the review session, please ask! Someone

else almost surely has a similar question.
• We’ll provide a feedback form at the end of the session.



Foundations I: Resource Sharing

• A network is just a set of elements (servers, routers, etc.) connected together,
that implements a set of protocols for the purpose of sharing resources at the
end hosts
◦ Visualized as graph with elements as nodes and links as the edges

connecting them

◦ Only one goal- deliver the data between edge nodes
• Statistical Multiplexing: combining demands to share resources without

overbuilding capacity, as aggregate of peak demand is much bigger than peak of
aggregate demand. Two approaches:
◦ Reservations/Circuit Switching: Source sends call request, path between

source and destination reserved + blocked off, communication happens, then
circuit teardown. Used in some telephone + ATM protocols. Can share a
channel using FDM (split frequencies) or TDM (round-robin whole resource)
◦ Packets/Datagrams: Packets contain data (body) + information on

how/where to send it and where it came from (headers). No
underutilization/blocked connections/setup costs and can route around link
failures, but no guarantees on availiability/delay, and overhead from headers.
Used basically everywhere.



Foundations I: Resource Sharing

• A network is just a set of elements (servers, routers, etc.) connected together,
that implements a set of protocols for the purpose of sharing resources at the
end hosts
◦ Visualized as graph with elements as nodes and links as the edges

connecting them
◦ Only one goal- deliver the data between edge nodes

• Statistical Multiplexing: combining demands to share resources without
overbuilding capacity, as aggregate of peak demand is much bigger than peak of
aggregate demand. Two approaches:
◦ Reservations/Circuit Switching: Source sends call request, path between

source and destination reserved + blocked off, communication happens, then
circuit teardown. Used in some telephone + ATM protocols. Can share a
channel using FDM (split frequencies) or TDM (round-robin whole resource)
◦ Packets/Datagrams: Packets contain data (body) + information on

how/where to send it and where it came from (headers). No
underutilization/blocked connections/setup costs and can route around link
failures, but no guarantees on availiability/delay, and overhead from headers.
Used basically everywhere.



Foundations I: Resource Sharing

• A network is just a set of elements (servers, routers, etc.) connected together,
that implements a set of protocols for the purpose of sharing resources at the
end hosts
◦ Visualized as graph with elements as nodes and links as the edges

connecting them
◦ Only one goal- deliver the data between edge nodes

• Statistical Multiplexing: combining demands to share resources without
overbuilding capacity, as aggregate of peak demand is much bigger than peak of
aggregate demand. Two approaches:

◦ Reservations/Circuit Switching: Source sends call request, path between
source and destination reserved + blocked off, communication happens, then
circuit teardown. Used in some telephone + ATM protocols. Can share a
channel using FDM (split frequencies) or TDM (round-robin whole resource)
◦ Packets/Datagrams: Packets contain data (body) + information on

how/where to send it and where it came from (headers). No
underutilization/blocked connections/setup costs and can route around link
failures, but no guarantees on availiability/delay, and overhead from headers.
Used basically everywhere.



Foundations I: Resource Sharing

• A network is just a set of elements (servers, routers, etc.) connected together,
that implements a set of protocols for the purpose of sharing resources at the
end hosts
◦ Visualized as graph with elements as nodes and links as the edges

connecting them
◦ Only one goal- deliver the data between edge nodes

• Statistical Multiplexing: combining demands to share resources without
overbuilding capacity, as aggregate of peak demand is much bigger than peak of
aggregate demand. Two approaches:
◦ Reservations/Circuit Switching: Source sends call request, path between

source and destination reserved + blocked off, communication happens, then
circuit teardown. Used in some telephone + ATM protocols. Can share a
channel using FDM (split frequencies) or TDM (round-robin whole resource)

◦ Packets/Datagrams: Packets contain data (body) + information on
how/where to send it and where it came from (headers). No
underutilization/blocked connections/setup costs and can route around link
failures, but no guarantees on availiability/delay, and overhead from headers.
Used basically everywhere.



Foundations I: Resource Sharing

• A network is just a set of elements (servers, routers, etc.) connected together,
that implements a set of protocols for the purpose of sharing resources at the
end hosts
◦ Visualized as graph with elements as nodes and links as the edges

connecting them
◦ Only one goal- deliver the data between edge nodes

• Statistical Multiplexing: combining demands to share resources without
overbuilding capacity, as aggregate of peak demand is much bigger than peak of
aggregate demand. Two approaches:
◦ Reservations/Circuit Switching: Source sends call request, path between

source and destination reserved + blocked off, communication happens, then
circuit teardown. Used in some telephone + ATM protocols. Can share a
channel using FDM (split frequencies) or TDM (round-robin whole resource)
◦ Packets/Datagrams: Packets contain data (body) + information on

how/where to send it and where it came from (headers). No
underutilization/blocked connections/setup costs and can route around link
failures, but no guarantees on availiability/delay, and overhead from headers.
Used basically everywhere.



Foundations II: Internet as IPC

• Main problem: inter-process communication, where processes may not be on
the same machine

End-To-End Story

◦ Program opens socket which allows it to connect to network stack
◦ DNS maps name of target to address
◦ Network stack embeds address and port of source/destination in datagram

headers
◦ Routers create routing tables to decide which outgoing link to send packets

along (knowing only local information). When link is free, forward packet to next
router
◦ When packet arrives at destination, forward to correct application

• Goal: Nodes shouldn’t have to worry about the implementation details of other
nodes, just the correct decision locally (modularity)
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Foundations III: Layering



Foundations IV: Desiderata

• Data Loss: some applications (video/audio) can tolerate it, others (file
transfer/ssh/etc.) can’t

◦ Packet Error Rate = N
P for N unrecoverable bit errors for P packets. Packets

can be recovered through error-correcting coding, depending on schema.
◦ Example: if bit error rate is 10−6, packet 10kb, no ECC, then PER is

1− (1− 10−6)10240 = 1.0%
• Bandwidth: some applications (video streaming) require some amount to be

effective, but “elastic apps” can use whatever bandwidth they get
◦ Throughput: Number of total correctly delivered bits in unit time
◦ Goodput: Number of application-layer correctly delivered bits in unit time

• Timing: some applications need packets to be delivered right away (video
games/live conferencing/etc.). Per Packet Latency = Transmit time +
Propagation delay + Process time + Queuing Delay. Assuming packet length L,
transmit rate R bps
◦ Transmit Time: Time used by transmitter to write packet to wire ( L

R )
◦ Propagation Delay: Time for packet to travel from transmitter to receiver

(distance
velocity )

◦ Process Time: Time required for router to read header + decide route
◦ Queuing Delay: Time that a packet waits in queue because link is busy. In

expectation, proportional to La
r with a packets in queue.
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Foundations V: Signal Processing

• Frequency Band refers to the range of frequencies used for a signal.
Bandwidth is the width of this band, is proportional to data rate.
• Frequency bands may be divided up into smaller channels for simultaneous

communication

• Carrier Frequency: Fixed (higher) frequency used to carry signal. Options
include Amplitude Shift Keying, Frequency Shift Keying
• Signal to Interference and Noise Ratio: Psignal

Pnoise+Pinterference
. Bit error rate is a

function of this.
Theorem (Shannon Capacity)

C = B log2(1 + SINR)
◦ Capacity (C) in bits per second
◦ Bandwidth (B) in Hz
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Application Layer: Transport Protocols

• Applications can choose between TCP and UDP

• TCP
◦ Uses connection setup between processes
◦ Provides a reliable transport guarantee w.r.t. correctness/order/duplication
◦ Flow control: sender won’t overwhelm receiver
◦ Congestion control: Will slow down to avoid network overload
◦ No guarantees on timing, bandwidth

• UDP
◦ Unreliable data transfer between sender and receiver. No fancy

control/ordering systems.
• Most internet protocols (HTTP/FTP/SMTP/etc.) are built on TCP, but a lot of

video streaming/VoIP/trading systems use UDP
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Application Layer: DNS

• A distributed database implemented as a hierarchy of name servers to
resolve domain names as IP addresses at the application layer
◦ 13 root DNS servers, thousands of TLD DNS servers (.com/.edu/.org/.uk),

authoritative DNS servers set up by organization or service provider
providing an authoritative source for organization’s servers (web, mail, etc.)

• Iterative Querying: Server either returns the record, or an address of a DNS
server who might
• Recursive Querying: Server returns record, asking other servers if needed
• When any DNS server learns a mapping, it caches it (which times out and

disappears eventually). Most common TLD servers are often cached locally,
meaning root name server unusual.
• 4 types of records: A (hostname name is IP address value), NS (authoritative

name server for name can be found at value), CNAME (the “real” name for alias
name is the canonical name value), MX (the mailserver for name has name
value)
• Inserting Records: Provide registrar with name and IP of authorative name

server, registrar inserts NS record for auth server name and A record for auth
server IP
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Application Layer: Architectures

• Client-Server
◦ Server: always-on host with constant address, Clients: communicate only with

servers and not with each other, may disconnect/reconnect, change IP
addresses.

• Peer-to-Peer
◦ No always-on server, peers might disconnect, change addresses. Scalable,

but sometimes difficult to manage. Examples: CHORD, Gnutella
• Many services use hybrid (ex: video conferencing/instant messaging: users

directly connect with each other but use central server to register/look up where
users are)
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Application Layer: HTTP

• Web pages consist of objects (HTML, images, javascript, etc.), each of which
has a URL

• HTTP uses a client-server model where clients request + render, servers send
objects in response to requests.
• HTTP uses TCP. Clients connect to port 80 of host, messages are exchanged

between brower + server.
• HTTP is “stateless”. Servers maintain no information about previous requests.
• Non-Persistent HTTP (HTTP/1.0): Connection closes after one response.

What’s the total response time? 2 × RTT + file transmit time per object.
• Persistent HTTP without pipelining: Connection stays open, but waits for one

message response before the next one is sent. What’s the total response time?
(# of referenced objects + 1) × RTT + data transmit time
• Persistent HTTP with pipelining (HTTP/1.1 default): Connection stays open,

and client requests a file as soon as it’s referenced. What’s the min possible total
response time? Setup + data transmit + 1 RTT for all objects.
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Application Layer: HTTP

• Two types of messages: request, response. Headers in ASCII (except for
HTTP/2 or later versions).
◦ Example Request:

GET / HTTP/1.1
Host: illinois.edu
User-Agent: curl/8.9.1
Accept: */*

◦ Method types: GET (gets requested file, can have information in URL
parameters), POST (uploads body to server), HEAD (leaves everything but
headers out), PUT (uploads file to path in URL field), DELETE (deletes file in
URL field)

◦ Example Response:
HTTP/1.1 200 OK
Date: Mon, 21 Oct 2024 23:15:43 GMT
Server: Apache/2.4.57 (Red Hat Enterprise Linux) OpenSSL/3.0.7
Last-Modified: Mon, 23 Sep 2024 21:24:01 GMT
ETag: "eac6-622d001ecb792"
Accept-Ranges: bytes
Content-Length: 60102
Content-Type: text/html; charset=UTF-8
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Application Layer: Caching

• Goal: Satisfy client request without involving origin server

• Browser sends all requests to cache, which acts as both client and server. If
cache has file, returns immediately, else requests from server and returns.
Which requests does this help?
• Can use conditional GET requests. Add If-modified-since field to

headers; if not modified, return status 304, else return file. Ensures that requests
are up-to-date while still saving bandwidth. Why?
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Application Layer: SMTP

• Uses TCP on port 25 to send mail
• Sending mail server acts as “client”, while recieving server acts as “server”. This

makes it a “push” protocol, rather than a “pull” protocol (like HTTP)
• Three phases of transfer: handshake, message transfer, closure. Commands in

ASCII, response is status code + message.
• Users access email boxes via user agents (POP3/IMAP/webmail).
• Lots more details, but they’re highly unlikely to come up on an exam.



Application Layer: CHORD

• Each file assigned a hash and assigned to the next highest node, each server
knows a “finger table” of nodes exponentially far away from current id, recursive
lookup structure.



Transport Layer: Goals

• We need to provide a reliable data stream to the receiver’s application from the
sender’s application. However, there’s a lot that can go wrong:

◦ Packets can be lost
◦ Packets can arrive out-of-order
◦ Packets can be delayed arbitrarily long
◦ Packets can be duplicated
◦ Packets can be corrupted
◦ We can overwhelm a sending/receiving buffer (thereby dropping packets)
◦ If we transmit too much, we can interfere with other communication going on

• We don’t want to use any information about lower/higher layers
• Also, distributed consensus is hard. Some of what we want to do is the Two

Generals’ Problem: since message acknowledgments are as likely to be lost as
messages, we’d potentially need infinite messages to come to consensus safely.
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Transport Layer: Basic Validation

• Most protocols: to avoid out of sequence ordering, assign each packet a
sequence number. Send an acknowledgment (ACK) if packet received.

• Packets can be corrupted. Receiver can calculate checksum to verify validity, as
well as run ECCs if protocol provides (Hamming codes, etc.) Some protocols
send NACKs to indicate that packet has been rejected, but most just ignore
packet.
• Idea: Instead of verifying message/ACK reception, have sender simply resend

the packet if no ACK has been received after some time. If receiver receives
duplicate packet (by sequence number), acknowledge but throw out. How does
this avoid two generals? Receiver doesn’t know (or care) which ACKs have
been received, so no distributed consensus.
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this avoid two generals? Receiver doesn’t know (or care) which ACKs have
been received, so no distributed consensus.



Transport Layer: Pipelined Protocols

• Validation + one-packet-at-a-time approach is correct, but is intolerably slow.
Solution: allow multiple packets to be “in-flight” (forming a context window)

• Go-Back-N (GBN): Receiver keeps track of the first packet that has not been
received (expected_seq_num).

1: procedure RECIEVE(k )
2: if k = expected_seq_num then
3: Send ACK(k ); expected_seq_num← expected_seq_num +1
4: else
5: Send ACK(expected_seq_num - 1) ▷ “cumulative ACK”
◦ On timeout: resend all packets in CW

• Selective ACK: receiver individually acknowledges all correctly received packets
(ACK(k )), buffers if needed for in-order delivery to application layer. Sender
retransmits packets where no ACK received. If receiver receives a packet with
the same sequence number as something in the buffer, throw out.
• TCP takes a hybrid approach, reports cumulative ACKs (lowest seq # not

recieved - 1), but will accept out-of-order packets and reorder them.
◦ Sender considers multiple ACK(i)s as dupACKs, fresh i in ACK(i) newACK.

Useful for estimating congestion.
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Transport Layer: TCP Congestion
Control

• Main Problem: How large do we make the context window?
◦ If too large, then router queues fill up, dropped packets, no fair sharing.
◦ If too small, then suboptimal performance.

• Initially, (after SYN/SYN-ACK/ACK), transmitter transmits small burst of packets,
waits for ACK. Exponentially increases burst size (slow start).
• After some point (SST/LIT), switch from doubling the window size every burst to

increasing it by 1 per burst.
• Sender keeps a timer to interrupt for timeout. When CW shifted, increase the

timer by the gap between packets. On timeout, drastically decrease CW, SST,
resend packets.
• DupACKs aren’t necessarily a bad sign, but might be indicator of missed packets.

If 3 dupACKs in a row, retransmit DupACK packet but don’t reset SST, slightly cut
CW (fast recovery).



Transport Layer: TCP Congestion
Control

• Main Problem: How large do we make the context window?
◦ If too large, then router queues fill up, dropped packets, no fair sharing.
◦ If too small, then suboptimal performance.

• Initially, (after SYN/SYN-ACK/ACK), transmitter transmits small burst of packets,
waits for ACK. Exponentially increases burst size (slow start).

• After some point (SST/LIT), switch from doubling the window size every burst to
increasing it by 1 per burst.
• Sender keeps a timer to interrupt for timeout. When CW shifted, increase the

timer by the gap between packets. On timeout, drastically decrease CW, SST,
resend packets.
• DupACKs aren’t necessarily a bad sign, but might be indicator of missed packets.

If 3 dupACKs in a row, retransmit DupACK packet but don’t reset SST, slightly cut
CW (fast recovery).



Transport Layer: TCP Congestion
Control

• Main Problem: How large do we make the context window?
◦ If too large, then router queues fill up, dropped packets, no fair sharing.
◦ If too small, then suboptimal performance.

• Initially, (after SYN/SYN-ACK/ACK), transmitter transmits small burst of packets,
waits for ACK. Exponentially increases burst size (slow start).
• After some point (SST/LIT), switch from doubling the window size every burst to

increasing it by 1 per burst.

• Sender keeps a timer to interrupt for timeout. When CW shifted, increase the
timer by the gap between packets. On timeout, drastically decrease CW, SST,
resend packets.
• DupACKs aren’t necessarily a bad sign, but might be indicator of missed packets.

If 3 dupACKs in a row, retransmit DupACK packet but don’t reset SST, slightly cut
CW (fast recovery).



Transport Layer: TCP Congestion
Control

• Main Problem: How large do we make the context window?
◦ If too large, then router queues fill up, dropped packets, no fair sharing.
◦ If too small, then suboptimal performance.

• Initially, (after SYN/SYN-ACK/ACK), transmitter transmits small burst of packets,
waits for ACK. Exponentially increases burst size (slow start).
• After some point (SST/LIT), switch from doubling the window size every burst to

increasing it by 1 per burst.
• Sender keeps a timer to interrupt for timeout. When CW shifted, increase the

timer by the gap between packets. On timeout, drastically decrease CW, SST,
resend packets.

• DupACKs aren’t necessarily a bad sign, but might be indicator of missed packets.
If 3 dupACKs in a row, retransmit DupACK packet but don’t reset SST, slightly cut
CW (fast recovery).



Transport Layer: TCP Congestion
Control

• Main Problem: How large do we make the context window?
◦ If too large, then router queues fill up, dropped packets, no fair sharing.
◦ If too small, then suboptimal performance.

• Initially, (after SYN/SYN-ACK/ACK), transmitter transmits small burst of packets,
waits for ACK. Exponentially increases burst size (slow start).
• After some point (SST/LIT), switch from doubling the window size every burst to

increasing it by 1 per burst.
• Sender keeps a timer to interrupt for timeout. When CW shifted, increase the

timer by the gap between packets. On timeout, drastically decrease CW, SST,
resend packets.
• DupACKs aren’t necessarily a bad sign, but might be indicator of missed packets.

If 3 dupACKs in a row, retransmit DupACK packet but don’t reset SST, slightly cut
CW (fast recovery).



Transport Layer: TCP State Machine



Transport Layer: TCP RTO Estimation

• How do we estimate how long timeout (RTO) should be?

◦ If too short, then premature timeout
◦ If too long, then slow reactions to packet loss

• Intuition: should be AvgRTT + some “guard factor”.
• AvgRTT estimated by rolling average: RTTavg ← (1− α)RTTavg + α RTTpacket

• “guard factor” can be a deviation estimate:

devRTTavg ← (1− β) devRTTavg + β(|RTTpacket − RTTavg|)
RTO ← RTTavg + 4 devRTTavg
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Transport Layer: Flow Control and
Fairness

• Problem: Receiver has a limited buffer. If many nodes transmitting to same
receiver, losses may happen at receiver

• Solution: Receiver reports how much space left to sender in ACKs. Sender will
deliberately use a smaller congestion window (while calculating CW as normal).

• TCP guarantees max-min fairness (in stable state): All flows requesting less
than fair share get their request. Remaining flows divide equally.
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Feedback

http://go.acm.illinois.edu/cs438_mt1_feedback


