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Disclaimers and Logistics

• Disclaimer: Some of us are CAs, but we have not seen the exam. We have no
idea what the questions are. However, we’ve taken the course and reviewed
Chandra’s previous exams, so we have suspicions as to what the questions will
be like.

• This review session is being recorded. Recordings and slides will be distributed
on EdStem after the end.

• Agenda: We’ll quickly review all topics likely to be covered, then go through a
practice exam, then review individual topics by request.
◦ Questions are designed to be written in the same style as Chandra’s previous

exams but to be slightly harder, so don’t worry if you don’t get everything right
away!

• Please let us know if we’re going too fast/slow, not speaking loud
enough/speaking too loud, etc.

• If you have a question anytime during the review session, please ask! Someone
else almost surely has a similar question.

• We’ll provide a feedback form at the end of the session.



Induction

Template

Let x be an arbitrary <OBJECT>. Assume for all k s.t. k is smaller than x (by
<ORDERING PROPERTY>), that P(k) holds.

If x = <MINIMAL OBJECT>, then . . . , so P(x) holds

If x ̸= <MINIMAL OBJECT>, then . . . , so by IH, . . . , so P(x) holds.

Thus, in all cases, P(x) holds.

Some tips:
• Always use strong induction. All weak inductive proofs can be re-written to use

strong induction with minimal changes, and the extra assumption can make your
life significantly easier.

• Write out your IH, base case, and inductive step out explicitly. Doing so will
help you avoid getting confused, and will help you avoid losing points.

• If you’re performing induction on a recursive definition (strings, CFLs, etc.),
generally, your inductive step will consist of one step of the recursion, and then
will use IH.
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Regular Languages/Expressions

• Built inductively on 3 operations:

◦ + is the union operator. L(r1 + r2) = L(r1) ∪ L(r2)
◦ ∗ is the Kleene star. L(r ∗1) = L(r1)

∗

◦ () are used to group expressions
◦ (implicit) concatenation operator: L(r1r2) = {xy : x ∈ L1, y ∈ L2}

• Closed under Union (∪), intersection (∩), concatenation (·), kleene star (∗),
complement (C), set difference (\), and reverse (R)
◦ ... but only finitely many applications of these operations

• If trying to guess whether or not a language is regular, think about memory.
When processing a string through a DFA, you only need to know which state
you’re currently in, and do not need to look forwards/backwards in the string.
◦ Implementing a DFA/NFA in code only requires O(1) memory
◦ If your checker program needs to count something without bound, the

language you’re checking isn’t regular.
• Regex Design Tips: If you don’t know where to start, try giving examples for

strings that are in the language and strings that aren’t. Look for patterns and try
to build components around those patterns, then combine into something that
represents the full language. Make sure to test and modify for edge cases.
Explain, in English, each part of your regular expression with a short sentence.
Does the explanation match the language?
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DFAs/NFAs

• DFAs defined by state set Q, accepting set A ⊆ Q, input alphabet Σ, start state
s ∈ Q, and transition function δ : Q × Σ → Q

• NFAs allow for “trying” multiple transitions at the same time or transitioning
without reading in (ϵ-transitions), accepts if there is a path to an accepting state.
Transition function thereby changes to δ : Q × (Σ ∪ {ϵ}) → 2Q

◦ Power-set construction to convert from NFA to DFA- in theory
exponential-time but used in practice.

• Tips for creating DFA/NFAs: Break down your language into smaller patterns,
and figure out what you need to store as state for each part. Make sure you
clearly define all components. A drawing or transition table is just as valid as a
(Q,A,Σ, s, δ) definition.

Product Constructions

Given some languages L1, . . . , Ln we want a DFA that accepts strings w satisfying
f (w ∈ L1, . . . ,w ∈ Ln) where f is some logical function. Create a DFA/NFA for L
using the following rough format:
◦ Q = Q1 × · · · × Qn
◦ δ′(q1, . . . , qn) = (δ1(q1), . . . , δ2(q2))
◦ s = (s1, . . . , sn)
◦ A′ = {convert f into a set expression}
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Fooling Sets

• DFAs only care about which state you’re in, and not how you got there
◦ If two strings result in the same DFA state, any additional suffix added to both

will also result in both strings being in the same state.

◦ Thus, if we have w ,w ′, and we know that there exists a distinguishing suffix
z s.t. wz ∈ L,w ′z ̸∈ L, then w ,w ′ must be in different states for any DFA that
accepts L

• A fooling set is a set of strings where there exists a distinguishing suffix
between every pair of strings

• Myhill-Nerode: min DFA size = max fooling set size
◦ Thus, languages with infinite fooling sets are not regular

• If you see the need to keep track of something without bound, you can create a
fooling set around the part where you count up.

• If you see divisibility, think primes! All primes are coprime, so primality
provides for an infinite set with easier construction of distinguishing suffixes.

• If you’re using strings of the form 1k , 0p, etc. when sampling elements of your
fooling set ai , aj , it’s completely fine to assume WLOG that j > i , but nothing
about the underlying structure of i and j . If you want to put in such a restriction,
you should instead restrict your fooling set further.
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Language Transforms

• Used to prove that regularity is closed under some function f (if L is regular, then
f (L) is regular).

• General Format: Given a DFA M that accepts L, create an NFA M ′ that accepts
f (L).

• General Strategy: Apply non-determinism to guess the future behavior of the
DFA that you want to simulate.

Make sure you’re going in the right direction!

If you see the format f (L) = {k(w) : w ∈ L}, your modified NFA should be trying to
undo k , while if you see the format f (L) = {w : k(w) ∈ L}, your modified NFA
should be trying to apply k . Mixing these up is the most common mistake we see on
homeworks/exams.

In some cases, only one direction is possible. For example,
un-palin(L) : {w : wwR ∈ L} has a transformation construction, but
palin(L) = {wwR : w ∈ L} is irregular for some L.
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Context-Free Languages/Grammars

• Formally, a context-free grammar is defined by nonterminals/variables V ,
terminals/symbols T , productions P, and the start symbol S. Each production
rule in P looks like A → α, where A ∈ V and α ∈ (V ∪ T )∗.

• For example, consider V = {S},T = {0, 1},P = {S → ϵ,S → 0S1}. (You can
abbreviate this to P = {S → ϵ | 0S1}.) What language is this?

Intuition

CFGs "build" strings, going from the outside in; you can choose rules to add
characters on the left/right.
Alternatively, CFGs "peel back" strings, removing characters from the left/right until
nothing is left.

• CFLs only closed under union, kleene star, and concatenation. CFLs are not
closed under intersection or complement.

regular

context free

context sensitive

recursively enumerable
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Short Answer T/F I

For each of the following, either mark true or false and give a one-sentence
explanation of your answer. (These are intentionally tricky)

(a) For all languages L, if L is irregular, then L has a finite fooling set.

(b) If M is a minimal DFA that decides a language L, and running M on strings x and
y result in states q and q′, respectively, where q ̸= q′, then there exists a
distinguishing suffix between x and y in L.

(c) Consider a language L ⊊ 0∗. If L contains two strings i, j s.t. gcd(|i|, |j|) = 1, then
L∗ is regular.

(d) The language L = {0i1j0k : i = j ∧ k ≡ i (mod 374)} is context-free.

(e) For context-free languages L1, L2, the language L = (L∗
1 · L2) ∪ (L1 · L∗

2) is
context-free.



Short Answer T/F II

For each of the following, either mark true or false and give a one-sentence
explanation of your answer. (These are intentionally tricky)

(f) The language {xxRy : x , y ∈ {0, 1}∗} is regular.

(g) If L is regular, then self-fold(L) = {a1ana2an−1 · · · a⌈n
2⌉ : a1a2 · · · an ∈ L} is

regular.

(h) Consider the language L = {1x2y3z : y = x + z}. There exists a distinguishing
suffix between the strings 1112222223 and 2223.

(i) Let M1,M2 be arbitrary NFAs with identical alphabets, states, starting states, and
transition functions, but with complementary accepting states. Then
L(M1) ∩ L(M2) = ∅.

(j) Consider an infinite set of regular languages L1, L2, . . . s.t. Li−1 ⊆ Li . The
language ∪∞

i=1Li is context free.



Regular or Not?

For each of the following languages, either prove that the language is regular, or
prove that it is not regular (Hint: exactly one of the two languages is regular)
• {1xyx : x , y ∈ {0, 1}∗}
• {x1xy : x , y ∈ {0, 1}∗}



Language Transformations

Let Σ = {0, 1}.
(a) Given a DFA M = (Q,A,Σ, s, δ) that decides a regular language L, provide an

NFA for the language L′ = {w · 0n : w ∈ L ∧ n ≥ 0}

(b) Given DFAs M1 = (Q1,A1,Σ, s1, δ1),M2 = (Q2,A2,Σ, s2, δ2) that decide regular
languages L1, L2, respectively, describe an NFA to decide
L = {w1 ⊗ w2 : w1 ∈ L1 ∧ w2 ∈ L2 ∧ |w1| = |w2|}, where ⊗ is the bitwise XOR
operator.

(c) Use your answers from parts (a) and (b) to prove that the bitwise XOR of two
regular languages (zero-padding the shorter string on the right) is regular.
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DFAs/NFAs/Regexes

With Σ = {0, 1},
(a) Write a regex for strings with no even-length runs.

(b) Write a DFA and regex for {w ∈ Σ∗ | #0(w) ≥ 2 ⊕#1(w) ≥ 2}.
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CFLs

Show that the following languages are context-free by providing grammars.
(a) {wwR : w ∈ {0, 1}∗ ∧ |wwR| ≡ 1 (mod 3)}

(b) {x$y : x , y ∈ {0, 1}∗ ∧#(1, x) = #(0, y)}
(c) {0x1y2z : x − y = z}
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